A cisplatin conjugate with tumor cell specificity exhibits antitumor effects in renal cancer models

Author:

Mrdenovic Stefan,Wang Yanping,Yin Lijuan,Chu Gina Chia-Yi,Ou Yan,Lewis Michael S.,Heffer Marija,Posadas Edwin M.,Zhau Haiyen E.,Chung Leland W. K.,Edderkaoui Mouad,Pandol Stephen J.,Wang Ruoxiang,Zhang Yi

Abstract

Abstract Background Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer and is notorious for its resistance to both chemotherapy and small-molecule inhibitor targeted therapies. Subcellular targeted cancer therapy may thwart the resistance to produce a substantial effect. Methods We tested whether the resistance can be circumvented by subcellular targeted cancer therapy with DZ-CIS, which is a chemical conjugate of the tumor-cell specific heptamethine carbocyanine dye (HMCD) with cisplatin (CIS), a chemotherapeutic drug with limited use in ccRCC treatment because of frequent renal toxicity. Results DZ-CIS displayed cytocidal effects on Caki-1, 786-O, ACHN, and SN12C human ccRCC cell lines and mouse Renca cells in a dose-dependent manner and inhibited ACHN and Renca tumor formation in experimental mouse models. Noticeably, in tumor-bearing mice, repeated DZ-CIS use did not cause renal toxicity, in contrast to the CIS-treated control animals. In ccRCC tumors, DZ-CIS treatment inhibited proliferation markers but induced cell death marker levels. In addition, DZ-CIS at half maximal inhibitory concentration (IC50) sensitized Caki-1 cells to small-molecule mTOR inhibitors. Mechanistically, DZ-CIS selectively accumulated in ccRCC cells’ subcellular organelles, where it damages the structure and function of mitochondria, leading to cytochrome C release, caspase activation, and apoptotic cancer cell death. Conclusions Results from this study strongly suggest DZ-CIS be tested as a safe and effective subcellular targeted cancer therapy.

Funder

Phileoever Foundation grant

U.S. Department of Defense

National Institutes of Health

Cedars‐Sinai CTSI grant

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3