Machine learning integrations develop an antigen-presenting-cells and T-Cells-Infiltration derived LncRNA signature for improving clinical outcomes in hepatocellular carcinoma

Author:

Wang Xiaodong,Chen Ji,Lin Lifan,Li Yifei,Tao Qiqi,Lang Zhichao,Zheng Jianjian,Yu Zhengping

Abstract

AbstractAs a highly heterogeneous cancer, the prognostic stratification and personalized management of hepatocellular carcinoma (HCC) are still challenging. Recently, Antigen-presenting-cells (APCs) and T-cells-infiltration (TCI) have been reported to be implicated in modifying immunology in HCC. Nevertheless, the clinical value of APCs and TCI-related long non-coding RNAs (LncRNAs) in the clinical outcomes and precision treatment of HCC is still obscure. In this study, a total of 805 HCC patients were enrolled from three public datasets and an external clinical cohort. 5 machine learning (ML) algorithms were transformed into 15 kinds of ML integrations, which was used to construct the preliminary APC-TCI related LncRNA signature (ATLS). According to the criterion with the largest average C-index in the validation sets, the optimal ML integration was selected to construct the optimal ATLS. By incorporating several vital clinical characteristics and molecular features for comparison, ATLS was demonstrated to have a relatively more significantly superior predictive capacity. Additionally, it was found that the patients with high ATLS score had dismal prognosis, relatively high frequency of tumor mutation, remarkable immune activation, high expression levels of T cell proliferation regulators and anti-PD-L1 response as well as extraordinary sensitivity to Oxaliplatin/Fluorouracil/Lenvatinib. In conclusion, ATLS may serve as a robust and powerful biomarker for improving the clinical outcomes and precision treatment of HCC.

Funder

Zhejiang Provincial Natural Science Foundation

Zhejiang Medical Association Foundation

Wenzhou Science and technology program

Zhejiang Provincial Medical and Health Planning Project

Zhejiang Provincial Research Centre for Diagnosis and Treatment of Critical Liver and Biliary Diseases

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3