A novel nomogram based on cell cycle-related genes for predicting overall survival in early-onset colorectal cancer

Author:

Xiang Meijuan,Gao Yuan,Zhou Yue,Wang Muqing,Yao Xueqing

Abstract

Abstract Background Although the incidence of late-onset colorectal cancer (LOCRC) has decreased, the incidence of early-onset colorectal cancer (EOCRC) is still rising dramatically. Heterogeneity in the genomic, biological, and clinicopathological characteristics between EOCRC and LOCRC has been revealed. Therefore, the previous prognostic models based on the total CRC patient population might not be suitable for EOCRC patients. Here, we constructed a prognostic classifier to enhance the precision of individualized treatment and management of EOCRC patients. Methods EOCRC expression data were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The regulatory pathways were explored by gene set enrichment analysis (GSEA). The prognostic model was developed by univariate Cox-LASSO-multivariate Cox regression analyses of GEO samples. TCGA samples were used to verify the model. The expression and mutation profiles and immune landscape of the high-risk and low-risk cohorts were analyzed and compared. Finally, the expression and prognostic value of the model genes were verified by immunohistochemistry and qRT‒PCR analysis. Results The cell cycle was identified as the most significantly enriched oncological signature of EOCRC. Then, a 4-gene prognostic signature comprising MCM2, INHBA, CGREF1, and KLF9 was constructed. The risk score was an independent predictor of overall survival. The area under the curve values of the classifier for 1-, 3-, and 5-year survival were 0.856, 0.893, and 0.826, respectively, in the training set and 0.749, 0.858, and 0.865, respectively, in the validation set. Impaired DNA damage repair capability (p < 0.05) and frequent PIK3CA mutations (p < 0.05) were found in the high-risk cohort. CD8 T cells (p < 0.05), activated memory CD4 T cells (p < 0.01), and activated dendritic cells (p < 0.05) were clustered in the low-risk group. Finally, we verified the expression of MCM2, INHBA, CGREF1, and KLF9. Their prognostic value was closely related to age. Conclusion In this study, a robust prognostic classifier for EOCRC was established and validated. The findings may provide a reference for individualized treatment and medical decision-making for patients with EOCRC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3