Identifies KCTD5 as a novel cancer biomarker associated with programmed cell death and chemotherapy drug sensitivity

Author:

Shi Yuan-Xiang,Yan Jian-Hua,Liu Wen,Deng Jun

Abstract

Abstract Background More and more studies have demonstrated that potassium channel tetramerization domain-containing 5 (KCTD5) plays an important role in the development of cancer, but there is a lack of comprehensive research on the biological function of this protein in pan-cancer. This study systematically analyzed the expression landscape of KCTD5 in terms of its correlations with tumor prognosis, the immune microenvironment, programmed cell death, and drug sensitivity. Methods We investigated a number of databases, including TCGA, GEPIA2, HPA, TISIDB, PrognoScan, GSCA, CellMiner, and TIMER2.0. The study evaluated the expression of KCTD5 in human tumors, as well as its prognostic value and its association with genomic alterations, the immune microenvironment, tumor-associated fibroblasts, functional enrichment analysis, and anticancer drug sensitivity. Real-time quantitative PCR and flow cytometry analysis were performed to determine the biological functions of KCTD5 in lung adenocarcinoma cells. Results The results indicated that KCTD5 is highly expressed in most cancers and that its expression is significantly correlated with tumor prognosis. Moreover, KCTD5 expression was related to the immune microenvironment, infiltration by cancer-associated fibroblasts, and the expression of immune-related genes. Functional enrichment analysis revealed that KCTD5 is associated with apoptosis, necroptosis, and other types of programmed cell death. In vitro experiments showed that knockdown of KCTD5 promoted apoptosis of A549 cells. Correlation analysis confirmed that KCTD5 was positively correlated with the expression of the anti-apoptotic genes Bcl-xL and Mcl-1. Additionally, KCTD5 was significantly associated with sensitivity to multiple antitumor drugs. Conclusion Our results suggest that KCTD5 is a potential molecular biomarker that can be used to predict patient prognosis, immunoreactions and drug sensitivity in pan-cancer. KCTD5 plays an important role in regulating programmed cell death, especially apoptosis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province of China

Scientific Research Project of Hunan Provincial Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3