Author:
Chai Hongjuan,Pan Chunpeng,Zhang Mingyang,Huo Haizhong,Shan Haiyan,Wu Jugang
Abstract
Abstract
Background
High expression of SETD1A, a histone methyltransferase that specifically methylates H3K4, acted as a key oncogene in several human cancers. However, the function and underlying molecular mechanism of SETD1A in ovarian cancer (OV) remain markedly unknown.
Methods
The expression of SETD1A in OV were detected by Western blot and analyzed online, and the prognosis of STED1A in OV were analyzed online. The protein and mRNA levels were determined by Western blot and RT-qPCR. The cell proliferatin, migration and invasion were measured by CCK-8 and transwell assays. The protein interaction was detected by co-IP assay. The interaction between protein and DNA was performed by ChIP assay. The tumor growth in vivo was performed by xenograft tumor model.
Results
SETD1A was overexpressed in OV and a predictor of poor prognosis. Overexpression of SETD1A augmented the abilities of cell proliferation, migration, and invasion in MRG1 and OVCAR5 cells. In comparison, SETD1A knockdown suppressed cell growth, migration, and invasion in SKOV3 and Caov3 cells. Specifically, SETD1A enhanced Notch signaling by promoting the expression of Notch target genes, such as Hes1, Hey1, Hey2, and Heyl. Mechanistically, SETD1A interacted with Notch1 and methylated H3K4me3 at Notch1 targets to enhance Notch signaling. In addition, restoration of Notch1 in SETD1A-knockdown OV cells recovered cell proliferation, migration and invasion, which was inhibited by SETD1A knockdown. Furthermore, reduction of SETD1A suppressed tumorigenesis in vivo.
Conclusion
In conclusion, our results highlighted the key role of SETD1A in OV development and proved that SETD1A promotes OV development by enhancing Notch1 signaling, indicating that SETD1A may be a novel target for OV treatment.
Funder
National Natural Science Foundation of China
Jiangsu Maternal and Child Health Research Key Project
the Fifth Batch of Gusu District Health Talent Training Project
Science and Technology Commission of Shanghai Municipality
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献