Flagellin synergistically enhances anti-tumor effect of EGFRvIII peptide in a glioblastoma-bearing mouse brain tumor model

Author:

Choi Jin Myung,Lim Sa-Hoe,Liu Zhi-Peng,Lee Tae Kyu,Rhee Joon Haeng,Yoon Mee Sun,Min Jung-Joon,Jung Shin

Abstract

Abstract Background Glioblastoma (GBM) is the most aggressive type of brain tumor with heterogeneity and strong invasive ability. Treatment of GBM has not improved significantly despite the progress of immunotherapy and classical therapy. Epidermal growth factor receptor variant III (EGFRvIII), one of GBM-associated mutants, is regarded as an ideal therapeutic target in EGFRvIII-expressed GBM patients because it is a tumor-specific receptor expressed only in tumors. Flagellin B (FlaB) originated from Vibrio vulnificus, is known as a strong adjuvant that enhances innate and adaptive immunity in various vaccine models. This study investigated whether FlaB synergistically could enhance the anti-tumor effect of EGFRvIII peptide (PEGFRvIII). Methods EGFRvIII-GL261/Fluc cells were used for glioblastoma-bearing mouse brain model. Cell-bearing mice were inoculated with PBS, FlaB alone, PEGFRvIII alone, and PEGFRvIII plus FlaB. Tumor growth based on MRI and the survival rate was investigated. T cell population was examined by flow cytometry analysis. Both cleaved caspase-3 and CD8 + lymphocytes were shown by immunohistochemistry (IHC) staining. Results The PEGFRvIII plus FlaB group showed delayed tumor growth and increased survival rate when compared to other treatment groups. As evidence of apoptosis, cleaved caspase-3 expression and DNA disruption were more increased in the PEGFRvIII plus FlaB group than in other groups. In addition, the PEGFRvIII plus FlaB group showed more increased CD8 + T cells and decreased Treg cells than other treatment groups in the brain. Conclusions FlaB can enhance the anti-tumor effect of PEGFRvIII by increasing CD8 + T cell response in a mouse brain GBM model.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3