A novel focal adhesion-related risk model predicts prognosis of bladder cancer —— a bioinformatic study based on TCGA and GEO database

Author:

Hu Jiyuan,Wang Linhui,Li Luanfeng,Wang Yutao,Bi Jianbin

Abstract

Abstract Background Bladder cancer (BLCA) is the ninth most common cancer globally, as well as the fourth most common cancer in men, with an incidence of 7%. However, few effective prognostic biomarkers or models of BLCA are available at present. Methods The prognostic genes of BLCA were screened from one cohort of The Cancer Genome Atlas (TCGA) database through univariate Cox regression analysis and functionally annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The intersecting genes of the BLCA gene set and focal adhesion-related gene were obtained and subjected to the least absolute shrinkage and selection operator regression (LASSO) to construct a prognostic model. Gene set enrichment analysis (GSEA) of high- and low-risk patients was performed to explore further the biological process related to focal adhesion genes. Univariate and multivariate Cox analysis, receiver operating characteristic (ROC) curve analysis, and Kaplan–Meier survival analysis (KM) were used to evaluate the prognostic model. DNA methylation analysis was presented to explore the relationship between prognosis and gene methylation. Furthermore, immune cell infiltration was assessed by CIBERSORT, ESTIMATE, and TIMER. The model was verified in an external GSE32894 cohort of the Gene Expression Omnibus (GEO) database, and the Prognoscan database presented further validation of genes. The HPA database validated the related protein level, and functional experiments verified significant risk factors in the model. Results VCL, COL6A1, RAC3, PDGFD, JUN, LAMA2, and ITGB6 were used to construct a prognostic model in the TCGA-BLCA cohort and validated in the GSE32894 cohort. The 7-gene model successfully stratified the patients into both cohorts’ high- and low-risk groups. The higher risk score was associated with a worse prognosis. Conclusions The 7-gene prognostic model can classify BLCA patients into high- and low-risk groups based on the risk score and predict the overall survival, which may aid clinical decision-making.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3