Author:
Jiao Xinyan,Wang Bo,Feng Chen,Song Shaoran,Tian Bixia,Zhou Can,Gao Xiaoqian,Sun Wei,Liu Peijun
Abstract
Abstract
Background
Breast cancer is the leading cause of cancer-related deaths in females worldwide. Formin-like protein 2 (FMNL2) is a member of formin family that governs cytokinesis, cell polarity, morphogenesis and cell division. To our knowledge, the function of FMNL2 in breast cancer proliferation still remains uncovered.
Methods
Tumor immune estimation resource (TIMER) analysis was used to detect the correlation between FMNL2 and Ki67 in breast cancer tissues. Quantitative real-time transcription polymerase chain reaction (qRT-PCR) and western blotting were performed to analyze the expression in human breast cancer cells. Moreover, RNA interference (RNAi) and plasmids were performed to silence and overexpress FMNL2 and p27. The CCK8, MTT, cell counting, colony formation, and 5-ethynyl-2-deoxyuridine (EdU) incorporation assays were used to detect cell proliferation, respectively. Flow cytometry analysis was used to detect cell cycle distribution. Further, the distribution of p27 was examined using immunofluorescence.
Results
We found that FMNL2 expression was positively associated with Ki67 among collected breast cancer tissues and in TCGA database. Compared to lower proliferative cells MCF7 and T47D, FMNL2 was overexpressed in highly proliferative breast cancer cells MDA-MB-231, BT549 and SUM159, accompanied by reduced levels of p27 and p21, and elevated CyclinD1 and Ki67 expression. FMNL2 silencing significantly inhibited the cell proliferation of MDA-MB-231 and BT549 cells. Meanwhile, FMNL2 overexpression distinctly promoted the cell proliferation of MCF7 cells. Furthermore, FMNL2 suppressed the nuclear levels of p27 and promoted p27 proteasomal degradation in human breast cancer cells. The ubiquitination of p27 was inhibited by FMNL2 silencing in BT549 cells. Besides, p27 silencing markedly elevated Ki67 expression and cell viability, which could be blocked by additionally FMNL2 silencing in MDA-MB-231 and BT549 cells. Furthermore, overexpression of p27WT significantly reversed the increased levels of FMNL2 and Ki67, cell viability and cell cycle progression induced by FMNL2 overexpression in MCF7 cells. More importantly, compared to p27WT group, those effects could be significantly reversed by p27△NLS overexpression.
Conclusions
These results demonstrated that FMNL2 promoted cell proliferation partially by reducing p27 nuclear localization and p27 protein stability in human breast cancer cells, suggesting the pivotal role of FMNL2 in breast cancer progression.
Funder
National Natural Science Foundation of China
Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献