Predicting the unpredictable: a robust nomogram for predicting recurrence in patients with ampullary carcinoma

Author:

Chen Ruiqiu,Zhu Lin,Zhang Yibin,Cui Dongyu,Chen Ruixiang,Guo Hao,Peng Li,Xiao Chaohui

Abstract

Abstract Objective To screen the risk factors affecting the recurrence risk of patients with ampullary carcinoma (AC)after radical resection, and then to construct a model for risk prediction based on Lasso-Cox regression and visualize it. Methods Clinical data were collected from 162 patients that received pancreaticoduodenectomy treatment in Hebei Provincial Cancer Hospital from January 2011 to January 2022. Lasso regression was used in the training group to screen the risk factors for recurrence. The Lasso-Cox regression and Random Survival Forest (RSF) models were compared using Delong test to determine the optimum model based on the risk factors. Finally, the selected model was validated using clinical data from the validation group. Results The patients were split into two groups, with a 7:3 ratio for training and validation. The variables screened by Lasso regression, such as CA19-9/GGT, AJCC 8th edition TNM staging, Lymph node invasion, Differentiation, Tumor size, CA19-9, Gender, GPR, PLR, Drinking history, and Complications, were used in modeling with the Lasso-Cox regression model (C-index = 0.845) and RSF model (C-index = 0.719) in the training group. According to the Delong test we chose the Lasso-Cox regression model (P = 0.019) and validated its performance with time-dependent receiver operating characteristics curves(tdROC), calibration curves, and decision curve analysis (DCA). The areas under the tdROC curves for 1, 3, and 5 years were 0.855, 0.888, and 0.924 in the training group and 0.841, 0.871, and 0.901 in the validation group, respectively. The calibration curves performed well, as well as the DCA showed higher net returns and a broader range of threshold probabilities using the predictive model. A nomogram visualization is used to display the results of the selected model. Conclusion The study established a nomogram based on the Lasso-Cox regression model for predicting recurrence in AC patients. Compared to a nomogram built via other methods, this one is more robust and accurate.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3