G6PD and machine learning algorithms as prognostic and diagnostic indicators of liver hepatocellular carcinoma

Author:

Li Fei,Wang Boshen,Li Hao,Kong Lu,Zhu Baoli

Abstract

Abstract Background Liver Hepatocellular carcinoma (LIHC) exhibits a high incidence of liver cancer with escalating mortality rates over time. Despite this, the underlying pathogenic mechanism of LIHC remains poorly understood. Materials & methods To address this gap, we conducted a comprehensive investigation into the role of G6PD in LIHC using a combination of bioinformatics analysis with database data and rigorous cell experiments. LIHC samples were obtained from TCGA, ICGC and GEO databases, and the differences in G6PD expression in different tissues were investigated by differential expression analysis, followed by the establishment of Nomogram to determine the percentage of G6PD in causing LIHC by examining the relationship between G6PD and clinical features, and the subsequent validation of the effect of G6PD on the activity, migration, and invasive ability of hepatocellular carcinoma cells by using the low expression of LI-7 and SNU-449. Additionally, we employed machine learning to validate and compare the predictive capacity of four algorithms for LIHC patient prognosis. Results Our findings revealed significantly elevated G6PD expression levels in liver cancer tissues as compared to normal tissues. Meanwhile, Nomogram and Adaboost, Catboost, and Gbdt Regression analyses showed that G6PD accounted for 46%, 31%, and 49% of the multiple factors leading to LIHC. Furthermore, we observed that G6PD knockdown in hepatocellular carcinoma cells led to reduced proliferation, migration, and invasion abilities. Remarkably, the Decision Tree C5.0 decision tree algorithm demonstrated superior discriminatory performance among the machine learning methods assessed. Conclusion The potential diagnostic utility of G6PD and Decision Tree C5.0 for LIHC opens up a novel avenue for early detection and improved treatment strategies for hepatocellular carcinoma.

Funder

the Open Project of Key Laboratory of Environmental Medicine Engineering of Ministry of Education

the Scientific Research Project of Jiangsu Health Committee

the Jiangsu Province’s Outstanding Medical Academic Leader program

Jiangsu Provincial Key Medical Discipline

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3