High glucose promotes the progression of colorectal cancer by activating the BMP4 signaling and inhibited by glucagon-like peptide-1 receptor agonist

Author:

Ma Bingwei,Wang Xingchun,Ren Hui,Li Yingying,Zhang Haijiao,Yang Muqing,Li Jiyu

Abstract

Abstract Background The detailed molecular mechanism between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) is still uncertain. Bone morphogenetic protein 4 (BMP4) dysregulation is implicated in T2DM and CRC, respectively. This study aims to investigate whether BMP4 can mediate the interaction of CRC with T2DM. Methods We firstly explored the expression of BMP4 in The Cancer Genome Altas (TCGA) databases and CRC patients with or without DM from the Shanghai Tenth People’s Hospital. The diabetic model of CRC cell lines in vitro and the mice model in vivo were developed to explore the BMP4 expression during CRC with or without diabetes. Further inhibition of BMP4 to observe its effects on CRC. Also, glucagon-like peptide-1 receptor agonist (GLP-1RA) was used to verify the underlying mechanism of hypoglycemic drugs on CRC via BMP4. Results BMP4 expression was upregulated in CRC patients, and significantly higher in CRC patients with diabetes (P < 0.05). High glucose-induced insulin resistance (IR)-CRC cells and diabetic mice with metastasis model of CRC had increased BMP4 expression, activated BMP4-Smad1/5/8 pathway, and improved proliferative and metastatic ability mediated by epithelial-mesenchymal transition (EMT). And, treated CRC cells with exogenously BMP inhibitor-Noggin or transfected with lentivirus (sh-BMP4) could block the upregulated metastatic ability of CRC cells induced by IR. Meanwhile, GLP-1R was downregulated by high glucose-induced IR while unregulated by BMP4 inhibitor noggin, and treated GLP-1RA could suppress the proliferation of CRC cells induced by IR through downregulated BMP4. Conclusions BMP4 increased by high glucose promoted the EMT of CRC. The mechanism of the BMP4/Smad pathway was related to the susceptible metastasis of high glucose-induced IR-CRC. The commonly used hypoglycemic drug, GLP-1RA, inhibited the growth and promoted the apoptosis of CRC through the downregulation of BMP4. The result of our study suggested that BMP4 might serve as a therapeutic target in CRC patients with diabetes.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3