Abstract
Abstract
Background
To study the risk factors involved in the occurrence and progression of cervical intraepithelial neoplasia (CIN) and to establish predictive models.
Methods
Genemania was used to build a gene network. Then, the core gene-related pathways associated with the occurrence and progression of CIN were screened in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) experiments were performed to verify the differential expression of the identified genes in different tissues. R language was used for predictive model establishment.
Results
A total of 10 genes were investigated in this study. A total of 30 cases of cervical squamous cell cancer (SCC), 52 cases of CIN and 38 cases of normal cervix were enrolled. Compared to CIN cases, the age of patients in the SCC group was older, the number of parities was greater, and the percentage of patients diagnosed with CINII+ by TCT was higher. The expression of TGFBR2, CSKN1A1, PRKCI and CTBP2 was significantly higher in the SCC groups. Compared to patients with normal cervix tissue, the percentage of patients who were HPV positive and were diagnosed with CINII+ by TCT was significantly higher. FOXO1 expression was significantly higher in CIN tissue, but TGFBR2 and CTBP2 expression was significantly lower in CIN tissue. The significantly different genes and clinical factors were included in the models.
Conclusions
Combination of clinical and significant genes to establish the random forest models can provide references to predict the occurrence and progression of CIN.
Funder
the National Public Welfare Research Project
the Thousand-Hundred-Ten Talent Project of Guangxi Province
the 139 Medical High-level Talents Training Plan of Guangxi Province
the Guangxi Medical Hygiene Appropriate Technology Development and Application Project
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference44 articles.
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
2. Ho GY, Burk RD, Klein S, Kadish AS, Chang CJ, Palan P, Basu J, Tachezy R, Lewis R, Romney S. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst. 1995;87(18):1365–71.
3. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin HR, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–56.
4. Jiang Y, Yin F, Chen Y, Yue L, Li L. Discovery of microarray-identified genes associated with the progression of cervical intraepithelial neoplasia. Int J Clin Exp Pathol. 2018;11(12):5667–81.
5. Tan MS, Chang SW, Cheah PL, Yap HJ. Integrative machine learning analysis of multiple gene expression profiles in cervical cancer. PeerJ. 2018;6:e5285.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献