Author:
YAMAGISHI Yoji,KOIWAI Tomomi,YAMASAKI Tamio,EINAMA Takahiro,FUKUMURA Makiko,HIRATSUKA Miyuki,KONO Takako,HAYASHI Katsumi,ISHIDA Jiro,UENO Hideki,TSUDA Hitoshi
Abstract
Abstract
Background
To evaluate the clinicopathological and prognostic significance of the percentage change between maximum standardized uptake value (SUVmax) at 60 min (SUVmax1) and SUVmax at 120 min (SUVmax2) (ΔSUVmax%) using dual time point 18F-fluorodeoxyglucose emission tomography/computed tomography (18F-FDG PET/CT) in breast cancer.
Methods
Four hundred and sixty-four patients with primary breast cancer underwent 18F-FDG PET/CT for preoperative staging. ΔSUVmax% was defined as (SUVmax2 − SUVmax1) / SUVmax1 × 100. We explored the optimal cutoff value of SUVmax parameters (SUVmax1 and ΔSUVmax%) referring to the event of relapse by using receiver operator characteristic curves. The clinicopathological and prognostic significances of the SUVmax1 and ΔSUVmax% were analyzed by Cox’s univariate and multivariate analyses.
Results
The optimal cutoff values of SUVmax1 and ΔSUVmax% were 3.4 and 12.5, respectively. Relapse-free survival (RFS) curves were significantly different between high and low SUVmax1 groups (P = 0.0003) and also between high and low ΔSUVmax% groups (P = 0.0151). In Cox multivariate analysis for RFS, SUVmax1 was an independent prognostic factor (P = 0.0267) but ΔSUVmax% was not (P = 0.152). There was a weak correlation between SUVmax1 and ΔSUVmax% (P < 0.0001, R2 = 0.166). On combining SUVmax1 and ΔSUVmax%, the subgroups of high SUVmax1 and high ΔSUVmax% showed significantly worse prognosis than the other groups in terms of RFS (P = 0.0002).
Conclusion
Dual time point 18F-FDG PET/CT evaluation can be a useful method for predicting relapse in patients with breast cancer. The combination of SUVmax1 and ΔSUVmax% was able to identify subgroups with worse prognosis more accurately than SUVmax1 alone.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference34 articles.
1. Ito Y, Miyashiro I, Ito H, Hosono S, Chihara D, Nakata-Yamada K, et al. Long-term survival and conditional survival of cancer patients in Japan using population-based cancer registry data. Cancer Sci. 2014;105:1480–6.
2. Choi JH, Lim I, Noh WC, Kim HA, Seong MK, Jang S, et al. Prediction of tumor differentiation using sequential PET/CT and MRI in patients with breast cancer. Ann Nucl Med. 2018;32:389–97.
3. Allarakha A, Gao Y, Jiang H, Wang PJ. Prediction and prognosis of biologically aggressive breast cancers by the combination of DWI/DCE-MRI and immunohistochemical tumor markers. Discov Med. 2019;27:7–15.
4. Fuster D, Duch J, Paredes P, Velasco M, Munoz M, Santamaria G, et al. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol. 2008;26:4746–51.
5. Groheux D, Hindié E, Delord M, Giacchetti S, Hamy A-S, de Bazelaire C, et al. Prognostic impact of (18)FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst. 2012;104:1879–87.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献