Benefit of dosimetry distribution for patients with multiple brain metastases from non-small cell lung cancer by a Cyberknife stereotactic radiosurgery (SRS) system

Author:

Yu Xuyao,Wang Yuwen,Yuan Zhiyong,Yu Hui,Song Yongchun,Zhao Lujun,Wang Ping

Abstract

Abstract Background In order to obtain a high dose conformal index of tumor and steep dose fall-off in healthy tissues for brain metastasis stereotactic radiosurgery (SRS), the aim of this study was to investigate SRS planning optimization by comparing one multiple-lesions plan (MLP) with multiple single-lesion plans (SLPs) for patients with multiple brain metastases using the Cyberknife (CK) system. Methods Fifty non-small cell lung cancer (NSCLC) patients (28 males and 22 females) with 2–4 brain metastases, inter-tumour distances less than 3 cm, were retrospectively replanned with the original prescription dose (12–32 Gy) in the original fractions (1–3). Two different clinical CK SRS plans (SLPs and MLP) were generated for the same patients with the same collimator and prescription isodose line (62–68%) by the CK Multiplan System. Both SLPs and MLP were able to achieve > 95% PTV volume covered prescription dose and met the Timmerman 2011 organs at risk (brainstem, optic nerve and pituitary) constraints. Results Compared with those in the SLPs, the maximum dose (Dmax) and mean dose (Dmean) of brainstem in the MLP were reduced 0.22–3.13% (2.62%) and 2.71–12.56% (5.57%), respectively, all P < 0.05. Meanwhile, the volumes of the whole brain minus the tumors that received a single dose equivalent of 8–16 Gy (V8Gy-V16Gy) were effectively reduced in the MLP. The treatment time parameters, the total number of beams and monitor units, of the MLP were reduced by 3.31 and 1.47% (P < 0.05), respectively. Although there were a few differences in the conformity index (CI) and homogeneity index (HI) between the two treatment plans, the differences were not statistically significant (P = 2.94 and 1.08 > 0.05). Conclusion One multiple-lesions plan for brain metastases could achieve higher precision in the target and lower doses in healthy tissue while shortening the treatment time and improving the treatment efficiency over multiple single-lesion plans.

Funder

Postdoctoral Research Foundation of China

ianjin Medical University Cancer Institute and Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3