Author:
Yu Jian,Gao Ge,Wei Xiangpin,Wang Yang
Abstract
Abstract
Background
Temozolomide (TMZ) resistance remains the main therapy challenge in patients with glioblastoma multiforme (GBM). TTK Protein Kinase (TTK) contributes to the radioresistance and chemoresistance in many malignancies. However, the role of TTK in the TMZ resistance of GBM cells remains unknown.
Methods
The expression of TTK was measured by western blot. The proliferation of GBM cells was assessed through MTT assay and clonogenic assay. Cell apoptosis was evaluated using western blot. LC3B puncta were detected using immunohistochemistry staining. The mouse xenograft model was used to investigate the role of TTK in vivo.
Results
Knockdown of TTK increased the sensitivity of GBM cells to TMZ treatment, while overexpression of TTK induced TMZ resistance. Two specific TTK inhibitors, BAY-1217389 and CFI-402257, significantly inhibited GBM cell proliferation and improved the growth-suppressive effect of TMZ. In addition, the knockdown of TTK decreased the autophagy levels of GBM cells. Inhibition of TTK using specific inhibitors could also suppress the autophagy process. Blocking autophagy using chloroquine (CQ) abolished the TMZ resistance function of TTK in GBM cells and in the mouse model.
Conclusions
We demonstrated that TTK promotes the TMZ resistance of GBM cells by inducing autophagy in vitro and in vivo. The use of a TTK inhibitor in combination with TMZ might help to overcome TMZ resistance and improve therapy efficiency in GBM.
Funder
Natural Science Foundation of Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference36 articles.
1. Lyne SB, Yamini B. An alternative pipeline for glioblastoma therapeutics: a systematic review of drug repurposing in glioblastoma. Cancers (Basel). 2021;13(8):1953.
2. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro-Oncology. 2019;21(Suppl 5):v1–v100.
3. Wang M, Zhang C, Wang X, Yu H, Zhang H, Xu J, et al. Tumor-treating fields (TTFields)-based cocktail therapy: a novel blueprint for glioblastoma treatment. Am J Cancer Res. 2021;11(4):1069–86.
4. Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 2019;38(1):166.
5. Combes G, Barysz H, Garand C, Gama Braga L, Alharbi I, Thebault P, et al. Mps1 Phosphorylates Its N-Terminal extension to relieve autoinhibition and activate the spindle assembly checkpoint. Curr Biol. 2018;28(6):872–883 e875.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献