Paradoxical downregulation of LPAR3 exerts tumor-promoting activity through autophagy induction in Ras-transformed cells

Author:

Hwang Sung-Hee,Kim Hye-Gyo,Lee Michael

Abstract

Abstract Background Lysophosphatidic acid receptor 3 (LPAR3) is coupled to Gαi/o and Gα11/q signaling. Previously, we reported that LPAR3 is highly methylated in carcinogen-induced transformed cells. Here, we demonstrate that LPAR3 exhibits malignant transforming activities, despite being downregulated in transformed cells. Methods The LPAR3 knockout (KO) in NIH 3 T3 and Bhas 42 cells was established using the CRISPR/Cas9 system. Both RT-PCR and DNA sequencing were performed to confirm the KO of LPAR3. The cellular effects of LPAR3 KO were further examined by WST-1 assay, immunoblotting analysis, transwell migration assay, colony formation assay, wound scratch assday, in vitro cell transformation assay, and autophagy assay. Results In v-H-ras-transformed cells (Ras-NIH 3 T3) with LPAR3 downregulation, ectopic expression of LPAR3 significantly enhanced the migration. In particular, LPAR3 knockout (KO) in Bhas 42 (v-Ha-ras transfected Balb/c 3 T3) and NIH 3 T3 cells caused a decrease in cell survival, transformed foci, and colony formation. LPAR3 KO led to the robust accumulation of LC3-II and autophagosomes and inhibition of autophagic flux by disrupting autophagosome fusion with lysosome. Conversely, autolysosome maturation proceeded normally in Ras-NIH 3 T3 cells upon LPAR3 downregulation. Basal phosphorylation of MEK and ERK markedly increased in Ras-NIH 3 T3 cells, whereas being significantly lower in LPAR3 KO cells, suggesting that increased MEK signaling is involved in autophagosome–lysosome fusion in Ras-NIH 3 T3 cells. Conclusions Paradoxical downregulation of LPAR3 exerts cooperative tumor-promoting activity with MEK activation through autophagy induction in Ras-transformed cells. Our findings have implications for the development of cancer chemotherapeutic approaches.

Funder

National Research Foundation of Korea

Incheon National University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3