Nomogram for predicting lymph node metastasis in patients with ovarian cancer using ultrasonography: a multicenter retrospective study

Author:

Yang Yaqin,Ye Xuewei,Zhou Binqian,Liu Yang,Feng Mei,Lv Wenzhi,Lu Dan,Cui Xinwu,Liu Jianxin

Abstract

Abstract Background Ovarian cancer is a common cancer among women globally, and the assessment of lymph node metastasis plays a crucial role in the treatment of this malignancy. The primary objective of our study was to identify the risk factors associated with lymph node metastasis in patients with ovarian cancer and develop a predictive model to aid in the selection of the appropriate surgical procedure and treatment strategy. Methods We conducted a retrospective analysis of data from patients with ovarian cancer across three different medical centers between April 2014 and August 2022. Logistic regression analysis was employed to establish a prediction model for lymph node metastasis in patients with ovarian cancer. We evaluated the performance of the model using receiver operating characteristic (ROC) curves, calibration plots, and decision analysis curves. Results Our analysis revealed that among the 368 patients in the training set, 101 patients (27.4%) had undergone lymph node metastasis. Maximum tumor diameter, multifocal tumor, and Ki67 level were identified as independent risk factors for lymph node metastasis. The area under the curve (AUC) of the ROC curve in the training set was 0.837 (95% confidence interval [CI]: 0.792–0.881); in the validation set this value was 0.814 (95% CI: 0.744–0.884). Calibration plots and decision analysis curves revealed good calibration and clinical application value. Conclusions We successfully developed a model for predicting lymph node metastasis in patients with ovarian cancer, based on ultrasound examination results and clinical data. Our model accurately identified patients at high risk of lymph node metastasis and may guide the selection of appropriate treatment strategies. This model has the potential to significantly enhance the precision and efficacy of clinical management in patients with ovarian cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3