AT-0174, a novel dual IDO1/TDO2 enzyme inhibitor, synergises with temozolomide to improve survival in an orthotopic mouse model of glioblastoma

Author:

Bickerdike Michael J.,Nafia Imane,Bessede Alban,Chen Cheng-Bang,Wangpaichitr Medhi

Abstract

Abstract Background Glioblastoma is an aggressive brain cancer, usually of unknown etiology, and with a very poor prognosis. Survival from diagnosis averages only 3 months if left untreated and this only increases to 12–15 months upon treatment. Treatment options are currently limited and typically comprise radiotherapy plus a course of the DNA-alkylating chemotherapeutic temozolomide. Unfortunately, the disease invariably relapses after several months of treatment with temozolomide, due to the development of resistance to the drug. Increased local tryptophan metabolism is a feature of many solid malignant tumours through increased expression of tryptophan metabolising enzymes. Glioblastomas are notable for featuring increased expression of the tryptophan catabolizing enzymes indole-2,3-dioxygenase-1 (IDO1), and especially tryptophan-2,3-dioxygenase-2 (TDO2). Increased IDO1 and TDO2 activity is known to suppress the cytotoxic T cell response to tumour cells, and this has led to the proposal that the IDO1 and TDO2 enzymes represent promising immuno-oncology targets. In addition to immune modulation, however, recent studies have also identified the activity of these enzymes is important in the development of resistance to chemotherapeutic agents. Methods In the current study, the efficacy of a novel dual inhibitor of IDO1 and TDO2, AT-0174, was assessed in an orthotopic mouse model of glioblastoma. C57BL/6J mice were stereotaxically implanted with GL261(luc2) cells into the striatum and then administered either vehicle control, temozolomide (8 mg/kg IP; five 8-day cycles of treatment every 2 days), AT-0174 (120 mg/kg/day PO) or both temozolomide + AT-0174, all given from day 7 after implantation. Results Temozolomide decreased tumour growth and improved median survival but increased the infiltration of CD4+ Tregs. AT-0174 had no significant effect on tumour growth or survival when given alone, but provided clear synergy in combination with temozolomide, further decreasing tumour growth and significantly improving survival, as well as elevating CD8+ T cell expression and decreasing CD4+ Treg infiltration. Conclusion AT-0174 exhibited an ideal profile for adjunct treatment of glioblastomas with the first-line chemotherapeutic drug temozolomide to prevent development of CD4+ Treg-mediated chemoresistance.

Funder

Antido Therapeutics

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3