Author:
Zhang Huai-wen,Zhong Xiao-ming,Zhang Zhen-hua,Pang Hao-wen
Abstract
Abstract
Objective
A neural network method was employed to establish a dose prediction model for organs at risk (OAR) in patients with cervical cancer receiving brachytherapy using needle insertion.
Methods
A total of 218 CT-based needle-insertion brachytherapy fraction plans for loco-regionally advanced cervical cancer treatment were analyzed in 59 patients. The sub-organ of OAR was automatically generated by self-written MATLAB, and the volume of the sub-organ was read. Correlations between D2cm3 of each OAR and volume of each sub-organ—as well as high-risk clinical target volume for bladder, rectum, and sigmoid colon—were analyzed. We then established a neural network predictive model of D2cm3 of OAR using the matrix laboratory neural net. Of these plans, 70% were selected as the training set, 15% as the validation set, and 15% as the test set. The regression R value and mean squared error were subsequently used to evaluate the predictive model.
Results
The D2cm3/D90 of each OAR was related to volume of each respective sub-organ. The R values for bladder, rectum, and sigmoid colon in the training set for the predictive model were 0.80513, 0.93421, and 0.95978, respectively. The ∆D2cm3/D90 for bladder, rectum, and sigmoid colon in all sets was 0.052 ± 0.044, 0.040 ± 0.032, and 0.041 ± 0.037, respectively. The MSE for bladder, rectum, and sigmoid colon in the training set for the predictive model was 4.779 × 10−3, 1.967 × 10−3 and 1.574 × 10−3, respectively.
Conclusion
The neural network method based on a dose-prediction model of OAR in brachytherapy using needle insertion was simple and reliable. In addition, it only addressed volumes of sub-organs to predict the dose of OAR, which we believe is worthy of further promotion and application.
Funder
the Open Fund for Scientific Research of Jiangxi Cancer Hospital
the Gulin County People’s Hospital, Southwest Medical University Affiliated Hospital Science and Technology Strategic Cooperation Project
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献