CT based automatic clinical target volume delineation using a dense-fully connected convolution network for cervical Cancer radiation therapy

Author:

Ju Zhongjian,Guo Wen,Gu Shanshan,Zhou Jin,Yang Wei,Cong Xiaohu,Dai Xiangkun,Quan Hong,Liu Jie,Qu Baolin,Liu Guocai

Abstract

Abstract Background It is very important to accurately delineate the CTV on the patient’s three-dimensional CT image in the radiotherapy process. Limited to the scarcity of clinical samples and the difficulty of automatic delineation, the research of automatic delineation of cervical cancer CTV based on CT images for new patients is slow. This study aimed to assess the value of Dense-Fully Connected Convolution Network (Dense V-Net) in predicting Clinical Target Volume (CTV) pre-delineation in cervical cancer patients for radiotherapy. Methods In this study, we used Dense V-Net, a dense and fully connected convolutional network with suitable feature learning in small samples to automatically pre-delineate the CTV of cervical cancer patients based on computed tomography (CT) images and then we assessed the outcome. The CT data of 133 patients with stage IB and IIA postoperative cervical cancer with a comparable delineation scope was enrolled in this study. One hundred and thirteen patients were randomly designated as the training set to adjust the model parameters. Twenty cases were used as the test set to assess the network performance. The 8 most representative parameters were also used to assess the pre-sketching accuracy from 3 aspects: sketching similarity, sketching offset, and sketching volume difference. Results The results presented that the DSC, DC/mm, HD/cm, MAD/mm, ∆V, SI, IncI and JD of CTV were 0.82 ± 0.03, 4.28 ± 2.35, 1.86 ± 0.48, 2.52 ± 0.40, 0.09 ± 0.05, 0.84 ± 0.04, 0.80 ± 0.05, and 0.30 ± 0.04, respectively, and the results were greater than those with a single network. Conclusions Dense V-Net can correctly predict CTV pre-delineation of cervical cancer patients and can be applied in clinical practice after completing simple modifications.

Funder

National Natural Science Foundation of China

Support foundation of PLA general hospital

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3