Therapeutic potential of a novel prodrug of green tea extract in induction of apoptosis via ERK/JNK and Akt signaling pathway in human endometrial cancer

Author:

Man Gene Chi Wai,Wang Jianzhang,Song Yi,Wong Jack Ho,Zhao Yu,Lau Tat San,Leung Kam Tong,Chan Tak Hang,Wang Huating,Kwong Joseph,Ng Tzi Bun,Wang Chi ChiuORCID

Abstract

Abstract Background Previous studies have shown a major green tea polyphenol (−)-epigallocatechin-3-gallate ((−)-EGCG) as a powerful anti-cancer agent. However, its poor bioavailability and requirement of a high dosage to manifest activity have restricted its clinical application. Recently, our team synthesized a peracetate-protected derivative of EGCG, which can act as a prodrug of (−)-EGCG (ProEGCG) with enhanced stability and improved bioavailability in vitro and in vivo. Herein, we tested the therapeutic efficacy of this novel ProEGCG, in comparison to EGCG, toward human endometrial cancer (EC). Methods In this study, the effects of ProEGCG and EGCG treatments on cell growth, cell survival and modulation of intracellular signaling pathways in RL95–2 and AN3 CA EC cells were compared. The antiproliferative effect was evaluated by cell viability assay. Apoptosis was measured by annexin/propidium iodide staining. Expression of mitogen-activated protein kinases, markers of proliferation and apoptosis were measured by immunoblot analysis. In addition, the effects of ProEGCG and EGCG on tumor growth, vessel formation and gene expression profiles on xenograft models of the EC cells were investigated. Results We found that treatment with ProEGCG, but not EGCG, inhibited, in a time- and dose-dependent manner, the proliferation and increased apoptosis of EC cells. Treatment with low-dose ProEGCG significantly enhanced phosphorylation of JNK and p38 MAPK and inhibited phosphorylation of Akt and ERK which are critical mediators of apoptosis. ProEGCG, but not EGCG, elicited a significant decrease in the growth of the EC xenografts, promoted apoptotic activity of tumour cells in the EC xenografts, and decreased microvessel formation, by differentially suppressing anti-apoptotic molecules, NOD1 and NAIP. Notably, no obvious adverse effects were detected. Conclusions Taken together, ProEGCG at a low dose exhibited anticancer activity in EC cells through its anti-proliferative, pro-apoptotic and anti-tumor actions on endometrial cancer in vitro and in vivo. In contrast, a low dose of EGCG did not bring about similar effects. Importantly, our data demonstrated the efficacy and safety of ProEGCG which manifests the potential of a novel anticancer agent for the management of endometrial cancer.

Funder

Hong Kong Obstetrical & Gynaecological Trust Fund 2016

Hong Kong Obstetrical & Gynaecological Trust Fund 2017

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3