Bayesian copy number detection and association in large-scale studies

Author:

Cristiano Stephen,McKean David,Carey Jacob,Bracci Paige,Brennan Paul,Chou Michael,Du Mengmeng,Gallinger Steven,Goggins Michael G.,Hassan Manal M.,Hung Rayjean J.,Kurtz Robert C.,Li Donghui,Lu Lingeng,Neale Rachel,Olson Sara,Petersen Gloria,Rabe Kari G.,Fu Jack,Risch Harvey,Rosner Gary L.,Ruczinski Ingo,Klein Alison P.,Scharpf Robert B.

Abstract

Abstract Background Germline copy number variants (CNVs) increase risk for many diseases, yet detection of CNVs and quantifying their contribution to disease risk in large-scale studies is challenging due to biological and technical sources of heterogeneity that vary across the genome within and between samples. Methods We developed an approach called CNPBayes to identify latent batch effects in genome-wide association studies involving copy number, to provide probabilistic estimates of integer copy number across the estimated batches, and to fully integrate the copy number uncertainty in the association model for disease. Results Applying a hidden Markov model (HMM) to identify CNVs in a large multi-site Pancreatic Cancer Case Control study (PanC4) of 7598 participants, we found CNV inference was highly sensitive to technical noise that varied appreciably among participants. Applying CNPBayes to this dataset, we found that the major sources of technical variation were linked to sample processing by the centralized laboratory and not the individual study sites. Modeling the latent batch effects at each CNV region hierarchically, we developed probabilistic estimates of copy number that were directly incorporated in a Bayesian regression model for pancreatic cancer risk. Candidate associations aided by this approach include deletions of 8q24 near regulatory elements of the tumor oncogene MYC and of Tumor Suppressor Candidate 3 (TUSC3). Conclusions Laboratory effects may not account for the major sources of technical variation in genome-wide association studies. This study provides a robust Bayesian inferential framework for identifying latent batch effects, estimating copy number, and evaluating the role of copy number in heritable diseases.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3