Identification of the potential novel biomarkers as susceptibility gene for Wilms tumor

Author:

Liu Li,Song Zhe,Gao Xu-Dong,Chen Xian,Wu Xiao-Bin,Wang Mi,Hong Yu-De

Abstract

Abstract Background Wilms tumor (WT) is the most common malignant renal tumor in children. The aim of this study was to identify potential susceptibility gene of WT for better prognosis. Methods Weighted gene coexpression network analysis is used for the detection of clinically important biomarkers associated with WT. Results In the study, 59 tissue samples from National Cancer Institute were pretreated for constructing gene co-expression network, while 224 samples also downloaded from National Cancer Institute were used for hub gene validation and module preservation analysis. Three modules were found to be highly correlated with WT, and 44 top hub genes were identified in these key modules eventually. In addition, both the module preservation analysis and gene validation showed ideal results based on other dataset with 224 samples. Meanwhile, Functional enrichment analysis showed that genes in module were enriched to sister chromatid cohesion, cell cycle, oocyte meiosis. Conclusion In summary, we established a gene co-expression network to identify 44 hub genes are closely to recurrence and staging of WT, and 6 of these hub genes was closely related to the poor prognosis of patients. Our findings revealed that those hub genes may be used as potential susceptibility gene for clinical diagnosis and prognosis of this tumor.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3