Author:
Mao Shuqi,Shan Yuying,Yu Xi,Yang Yong,Wu Shengdong,Lu Caide
Abstract
Abstract
Backgroud
We aimed to develop a novel preoperative nomogram to predict lymph node metastasis (LNM) in perihilar cholangiocarcinoma (pCCA) patients.
Methods
160 pCCA patients were enrolled at Lihuili Hospital from July 2006 to May 2022. A novel nomogram model was established to predict LNM in pCCA patients based on the independent predictive factors selected by the multivariate logistic regression model. The precision of the nomogram model was evaluated through internal and external validation with calibration curve statistics and the concordance index (C-index). Receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were used to evaluate and determine the clinical utility of the nomogram.
Results
Multivariate logistic regression demonstrated that age (OR = 0.963, 95% CI: 0.930–0.996, P = 0.030), CA19-9 level (> 559.8 U/mL vs. ≤559.8 U/mL: OR = 3.162, 95% CI: 1.519–6.582, P = 0.002) and tumour diameter (OR = 1.388, 95% CI: 1.083–1.778, P = 0.010) were independent predictive factors of LNM in pCCA patients. The C-index was 0.763 (95% CI: 0.667–0.860) and 0.677 (95% CI: 0.580–0.773) in training cohort and validation cohort, respectively. ROC curve analysis indicated the comparative stability and adequate discriminative ability of nomogram. The sensitivity and specificity were 0.820 and 0.652 in training cohort and 0.704 and 0.649 in validation cohort, respectively. DCA revealed that the nomogram model could augment net benefits in the prediction of LNM in pCCA patients.
Conclusions
The novel prediction model is useful for predicting LNM in pCCA patients and showed adequate discriminative ability and high predictive accuracy.
Funder
Ningbo medical and health brand discipline
Natural Science Foundation of Ningbo Municipality
Municipal Key Technical Research and Development Program of Ningbo
Lihuili Hospital Research and Cultivation Project
Publisher
Springer Science and Business Media LLC