Abstract
Abstract
Background
Cancer is the major cause of morbidity and mortality worldwide. The cancer burden varies within the regions of India posing great challenges in its prevention and control. The national burden assessment remains as a task which relies on statistical models in many developing countries, including India, due to cancer not being a notifiable disease. This study quantifies the cancer burden in India for 2016, adjusted mortality to incidence (AMI) ratio and projections for 2021 and 2025 from the National Cancer Registry Program (NCRP) and other publicly available data sources.
Methods
Primary data on cancer incidence and mortality between 2012 and 2016 from 28 Population Based Cancer Registries (PBCRs), all-cause mortality from Sample Registration Systems (SRS) 2012–16, lifetables and disability weight from World Health Organization (WHO), the population from Census of India and cancer prevalence using the WHO-DisMod-II tool were used for this study. The AMI ratio was estimated using the Markov Chain Monte Carlo method from longitudinal NCRP-PBCR data (2001–16). The burden was quantified at national and sub-national levels as crude incidence, mortality, Years of Life Lost (YLLs), Years Lived with Disability (YLDs) and Disability Adjusted Life Years (DALYs). The projections for the years 2021 and 2025 were done by the negative binomial regression model using STATA.
Results
The projected cancer burden in India for 2021 was 26.7 million DALYsAMI and expected to increase to 29.8 million in 2025. The highest burden was in the north (2408 DALYsAMI per 100,000) and northeastern (2177 DALYsAMI per 100,000) regions of the country and higher among males. More than 40% of the total cancer burden was contributed by the seven leading cancer sites — lung (10.6%), breast (10.5%), oesophagus (5.8%), mouth (5.7%), stomach (5.2%), liver (4.6%), and cervix uteri (4.3%).
Conclusions
This study demonstrates the use of reliable data sources and DisMod-II tools that adhere to the international standard for assessment of national and sub-national cancer burden. A wide heterogeneity in leading cancer sites was observed within India by age and sex. The results also highlight the need to focus on non-leading sites of cancer by age and sex. These findings can guide policymakers to plan focused approaches towards monitoring efforts on cancer prevention and control. The study simplifies the methodology used for arriving at the burden estimates and thus, encourages researchers across the world to take up similar assessments with the available data.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference36 articles.
1. Bray F, Ferlay J, Soerjomataram I, Siegel LR, Torre AL, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
2. GLOBOCAN;International Agency for Research on Cancer,2018
3. India State-Level Disease Burden Initiative Collaborators. Nations within a nation: variations in epidemiological transition across the states of India, 1990-2016 in the global burden of disease study. Lancet. 2017;390:2437–60.
4. India State-Level Disease Burden Initiative Cancer Collaborators. The burden of cancers and their variations across the states of India: the Global Burden of Disease Study 1990–2016. Lancet Oncol. 2018;19(10):1289–306. https://doi.org/10.1016/S1470-2045(18)30447-9 Epub 2018 Sep 12. Erratum in: Lancet Oncol. 2018 Oct 3; PMID: 30219626; PMCID: PMC6167407.
5. Murthy NS, Nandakumar BS, Pruthvish S, George PS, Mathew A. Disability adjusted life years for Cancer patients in India. Asian Pacific J Cancer Prev. 2012;11:633–40.
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献