Fusobacterium nucleatum facilitates proliferation and autophagy by activating miR-361-3p/NUDT1 axis through oxidative stress in hypopharyngeal squamous cell carcinoma

Author:

Lau Hui-Ching,Yuan Xiaohui,Huang Huiying,Zhang Ming,Hsueh Chi-Yao,Gong Hongli

Abstract

Abstract Background To investigate how Fusobacterium nucleatum (Fn) promotes oxidative stress and mediates proliferation and autophagy in hypopharyngeal squamous cell carcinoma (HPSCC). Methods The prognosis for 82 HPSCC cases was retrospectively analyzed. HPSCC cell line FaDu was co-cultured with Fn. Knockdown of NUDT1 (shNUDT1 group) was done after observing DNA damage response. CCK8 and tumorigenesis assays for proliferation observation, mitochondria ROS (MitoROS) measurement to examine intracellular oxidative stress, and ELISA to analyze concentration of 8-oxo-2’-deoxyguanosine (8-oxo-dG) in cells. Dual-luciferase reporter assays clarified miR-361-3p connection with NUDT1. Autophagy flow was observed using electron microscopy and related proteins. Results Fn was highly associated with NUDT1. The shNUDT1 group experienced lower proliferation compared with normal FaDu (NC group) in vivo and in vitro. The shNUDT1 group showed 8-oxo-dG and γH2AX to be elevated. Intracellular ROS decreased in shNUDT1Fn group when compared to Fn group. Upregulating miR-361-3p could suppress NUDT1 expression and downstream proliferation and autophagy. Fn modulated miR-361-3p via OH, which could be proven by H2O2 assay and N-acetylcysteine. Conclusions Higher Fn in HPSCC patients suggests poorer prognosis. NUDT1 might affect cell proliferation and autophagy and modulate DNA damage response. The oxidative stress induced miR-361-3p/NUDT1 axis is first introduced in microbiome-carcinoma research.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3