Author:
Han Bing,Zhen Fang,Zheng Xiu-Shuang,Hu Jing,Chen Xue-Song
Abstract
Abstract
Background
ITPR1 is a key gene for autophagy, but its biological function is still unclear, and there are few studies on the correlation between ITPR1 gene expression and the occurrence and development of breast cancer.
Methods
Analyze the expression of ITPR1 through online databases such as Oncomine and TIMER. Kaplan–Meier plotter and other databases were used to evaluate the impact of ITPR1 on clinical prognosis. The expression of ITPR1 in analysis of 145 cases of breast cancer and 30 cases of adjacent normal tissue was detected by Immunohistochemistry. Statistical analysis was used to evaluate the clinical relevance and prognostic significance of abnormally expressed proteins. And the Western Blot was used to detect the expression of ITPR1 between breast cancer tissues and cells. The TIMER database studied the relationship between ITPR1 and cancer immune infiltration. And used the ROC plotter database to predict the response of ITPR1 to chemotherapy, endocrine therapy and anti-HER2 therapy in patients with breast cancer.
Results
Compared with normal breast samples, ITPR1 was significantly lower in patients with breast cancer. And the increased expression of ITPR1 mRNA was closely related to longer overall survival (OS), distant metastasis free survival (DMFS), disease specific survival (DSS) and relapse free survival (RFS) in breast cancer. And the expression level of ITPR1 was higher in patients treated with chemotherapy than untreated patients. In addition, the expression of ITPR1 was positively correlated with related gene markers of immune cells in different types of breast cancer, especially with BRCA basal tissue breast cancer.
Conclusion
ITPR1 was lower expressed in breast cancer. The higher expression of ITPR1 suggested favorable prognosis for patients. ITPR1 was related to the level of immune infiltration, especially in BRCA-Basal patients. All research results indicated that ITPR1 might affect breast cancer prognosis and participate in immune regulation. In short, ITPR1 might be a potential target for breast cancer therapy.
Funder
National Natural Science Foundation of China
Natural Science Fund for Outstanding Youth of Heilongjiang Province
Postdoctoral Scientific Research Staring Fund of Heilongjiang Province
Major Program of Haiyan Fund of Harbin Medical University Cancer Hospital
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献