NPAS2 promotes aerobic glycolysis and tumor growth in prostate cancer through HIF-1A signaling

Author:

Ma Shuaijun,Chen Yafan,Quan Penghe,Zhang Jingliang,Han Shichao,Wang Guohui,Qi Ruochen,Zhang Xiaoyan,Wang Fuli,Yuan Jianlin,Yang Xiaojian,Jia Weijing,Qin Weijun

Abstract

Abstract Background Prostate cancer (PCa), one of the common malignant tumors, is the second leading cause of cancer-related deaths in men. The circadian rhythm plays a critical role in disease. Circadian disturbances are often found in patients with tumors and enable to promote tumor development and accelerate its progression. Accumulating evidence suggests that the core clock gene NPAS2 (neuronal PAS domain-containing protein 2) has been implicated in tumors initiation and progression. However, there are few studies on the association between NPAS2 and prostate cancer. The purpose of this paper is to investigate the impact of NPAS2 on cell growth and glucose metabolism in prostate cancer. Methods Quantitative real-time PCR (qRT-PCR), immunohistochemical (IHC) staining, western blot, GEO (Gene Expression Omnibus) and CCLE (Cancer Cell Line Encyclopedia) databases were used to analyze the expression of NPAS2 in human PCa tissues and various PCa cell lines. Cell proliferation was assessed using MTS, clonogenic assays, apoptotic analyses, and subcutaneous tumor formation experiments in nude mice. Glucose uptake, lactate production, cellular oxygen consumption rate and medium pH were measured to examine the effect of NPAS2 on glucose metabolism. The relation of NPAS2 and glycolytic genes was analyzed based on TCGA (The Cancer Genome Atlas) database. Results Our data showed that NPAS2 expression in prostate cancer patient tissue was elevated compared with that in normal prostate tissue. NPAS2 knockdown inhibited cell proliferation and promoted cell apoptosis in vitro and suppressed tumor growth in a nude mouse model in vivo. NPAS2 knockdown led to glucose uptake and lactate production diminished, oxygen consumption rate and pH elevated. NPAS2 increased HIF-1A (hypoxia-inducible factor-1A) expression, leading to enhanced glycolytic metabolism. There was a positive correlation with the expression of NPAS2 and glycolytic genes, these genes were upregulated with overexpression of NPAS2 while knockdown of NPAS2 led to a lower level. Conclusion NPAS2 is upregulated in prostate cancer and promotes cell survival by promoting glycolysis and inhibiting oxidative phosphorylation in PCa cells.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3