Abstract
Abstract
Background
Myeloma cells retain B cell functions, considered to be potential antigen presenting cells, yet there is little information regarding promoting Th2 cell proliferation or the direct effects to myeloma on the Th2 cells stimulated by microbial antigens-loaded myeloma cells.
Methods
Mixed lymphocyte reaction was used colorimetric assays via CCK8-kit. Surface molecular expression was performed by flow cytometry, cells sorting using microbeads. The concentrations of cytokines in serum were assessed using an ELISA kit. Clonogenic assay were performed in a methylcellulose culture system. Statistical analysis was assessed using the Student’s t-test or one-way analysis of variance for multiple comparisons test.
Results
The expression of HLA-DR, CD80 and CD40 on RPMI8266 cell membrane surface was upregulated by interaction with interferon-γ and/or Bacillus Calmette-Guerin Vaccine (BCGV). RPMI8266 cells were able to induce the mixed lymphocyte reaction in a dose-dependent fashion. The Th2 ratio induced by RPMI8266 treated by BCGV and interferon-γ (treated-RPMI8266) cells was only slightly greater than by untreated-tumor cells, but the serum IL-4 level secreted by Th2 cells was markedly higher in treated-RPMI8266 cells group. Th2 cells stimulated by treated-myeloma cells could directly promote treated-myeloma cell clonogenicity in a dose-dependent manner. Anti-HLADR IgG2b completely blocked increased of IL-4 secretion by Th2 cells stimulated by treated-myeloma cells, while also blocked enhancing the clonogenicity of treated tumor cells stimulated by MM-Th2 cells.
Conclusions
These results indicate that a novel mechanism of myeloma pathogenesis in myeloma cells could act as an APC to present microbial Ags to Th2 cells, promoting Th2 cell proliferation, consequently facilitating tumor development by close interaction between Th2 myeloma cells. Taken together, the microbial Ag presenting course of MM-Th2-MM interactions—restricted by MHC class-II—may result in tumor development such that all factors involved in the system could have a potential for myeloma therapeutic intervention.
Funder
the Science and Technology R & D Fund of Shenzhen
the Medical Research Foundation of Guangdong Province
National Natural Science Foundation of China
the Natural Science Foundation of Guangdong Province, China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献