A Comprehensive Prognostic Analysis of POLD1 in Hepatocellular Carcinoma

Author:

Tang Hui,You Tingting,Sun Zhao,Bai ChunmeiORCID

Abstract

Abstract Background DNA polymerase delta 1 catalytic subunit (POLD1) plays a key role in DNA replication and damage repair. A defective DNA proofreading function caused by POLD1 mutation contributes to carcinogenesis, while POLD1 overexpression predicts poor prognosis in cancers. However, the effect of POLD1 in hepatocellular carcinoma (HCC) is not well-understood. Methods Expression patterns of POLD1 were evaluated in TCGA and the HPA databases. Kaplan-Meier curves and Cox regression were used to examine the prognostic value of POLD1. The prognostic and predictive value of POLD1 was further validated by another independent cohort from ICGC database. The influences of DNA copy number variation, methylation and miRNA on POLD1 mRNA expression were examined. The correlation between infiltrating immune cells and POLD1 expression was analyzed. GO and KEGG enrichment analyses were performed to detect biological pathways associated with POLD1 expression in HCC. Results POLD1 was overexpressed in HCC (n = 369) compared with adjacent normal liver (n = 50). POLD1 upregulation was significantly correlated with positive serum AFP and advanced TNM stage. Kaplan–Meier and multivariate analyses suggested that POLD1 overexpression predicts poor prognosis in HCC. DNA copy gain, low POLD1 methylation, and miR‑139-3p downregulation were associated with POLD1 overexpression. Besides, POLD1 expression was associated with the infiltration levels of dendritic cell, macrophage, B cell, and CD4 + T cell in HCC. Functional enrichment analysis suggested “DNA replication”, “mismatch repair” and “cell cycle” pathways might be involved in the effect of POLD1 on HCC pathogenesis. Additionally, POLD1 mRNA expression was significantly associated with tumor mutation burden, microsatellite instability, and prognosis in various tumors. Conclusions POLD1 may be a potential prognostic marker and promising therapeutic target in HCC.

Funder

Chinese Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3