Integrated bioinformatics analysis and experimental validation reveal ISG20 as a novel prognostic indicator expressed on M2 macrophage in glioma

Author:

Peng Yaojun,Liu Hongyu,Wu Qiyan,Wang Lingxiong,Yu Yanju,Yin Fan,Feng Cong,Ren Xuewen,Liu Tianyi,Chen Ling,Zhu Haiyan

Abstract

Abstract Background Glioma is the most common malignant primary brain tumor and is characterized by a poor prognosis and limited therapeutic options. ISG20 expression is induced by interferons or double-stranded RNA and is associated with poor prognosis in several malignant tumors. Nevertheless, the expression of ISG20 in gliomas, its impact on patient prognosis, and its role in the tumor immune microenvironment have not been fully elucidated. Methods Using bioinformatics, we comprehensively illustrated the potential function of ISG20, its predictive value in stratifying clinical prognosis, and its association with immunological characteristics in gliomas. We also confirmed the expression pattern of ISG20 in glioma patient samples by immunohistochemistry and immunofluorescence staining. Results ISG20 mRNA expression was higher in glioma tissues than in normal tissues. Data-driven results showed that a high level of ISG20 expression predicted an unfavorable clinical outcome in glioma patients, and revealed that ISG20 was possibly expressed on tumor-associated macrophages and was significantly associated with immune regulatory processes, as evidenced by its positive correlation with the infiltration of regulatory immune cells (e.g., M2 macrophages and regulatory T cells), expression of immune checkpoint molecules, and effectiveness of immune checkpoint blockade therapy. Furthermore, immunohistochemistry staining confirmed the enhanced expression of ISG20 in glioma tissues with a higher WHO grade, and immunofluorescence assay verified its cellular localization on M2 macrophages. Conclusions ISG20 is expressed on M2 macrophages, and can serve as a novel indicator for predicting the malignant phenotype and clinical prognosis in glioma patients.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3