Identification of common signatures in idiopathic pulmonary fibrosis and lung cancer using gene expression modeling

Author:

Leng Dong,Yi Jiawen,Xiang Maodong,Zhao Hongying,Zhang Yuhui

Abstract

Abstract Background Idiopathic pulmonary fibrosis (IPF) is associated with an increased risk for lung cancer, but the underlying mechanisms driving malignant transformation remain largely unknown. This study aimed to identify differentially expressed genes (DEGs) distinguishing IPF and lung cancer from healthy individuals and common genes driving the transformation from healthy to IPF and lung cancer. Methods The gene expression data for IPF and non-small cell lung cancer (NSCLC) were retrieved from the Gene Expression Omnibus (GEO) database. The DEG signatures were identified via unsupervised two-way clustering (TWC) analysis, supervised support vector machine analysis, dimensional reduction, and mutual exclusivity analysis. Gene enrichment and pathway analyses were performed to identify common signaling pathways. The most significant signature genes in common among IPF and lung cancer were further verified by immunohistochemistry. Results The gene expression data from GSE24206 and GSE18842 were merged into a super array dataset comprising 86 patients with lung disorders (17 IPF and 46 NSCLC) and 51 healthy controls and measuring 23,494 unique genes. Seventy-nine signature DEGs were found among IPF and NSCLC. The peroxisome proliferator-activated receptor (PPAR) signaling pathway was the most enriched pathway associated with lung disorders, and matrix metalloproteinase-1 (MMP-1) in this pathway was mutually exclusive with several genes in IPF and NSCLC. Subsequent immunohistochemical analysis verified enhanced MMP1 expression in NSCLC associated with IPF. Conclusions For the first time, we defined common signature genes for IPF and NSCLC. The mutually exclusive sets of genes were potential drivers for IPF and NSCLC.

Funder

Key Subject Construction Project of China, and Beijing Chao-Yang Hospital Capital Medical University

National Natural Science Foundation of China

Beijing Natural Science Foundation

Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3