Author:
Gu Zhaowen,Dai Wenli,Chen Jiarui,Jiang Qixuan,Lin Weiwei,Wang Qiangwei,Chen Jingyin,Gu Chi,Li Jia,Ying Guangyu,Zhu Yongjian
Abstract
Abstract
Purpose
Preoperative diagnosis of filum terminale ependymomas (FTEs) versus schwannomas is difficult but essential for surgical planning and prognostic assessment. With the advancement of deep-learning approaches based on convolutional neural networks (CNNs), the aim of this study was to determine whether CNN-based interpretation of magnetic resonance (MR) images of these two tumours could be achieved.
Methods
Contrast-enhanced MRI data from 50 patients with primary FTE and 50 schwannomas in the lumbosacral spinal canal were retrospectively collected and used as training and internal validation datasets. The diagnostic accuracy of MRI was determined by consistency with postoperative histopathological examination. T1-weighted (T1-WI), T2-weighted (T2-WI) and contrast-enhanced T1-weighted (CE-T1) MR images of the sagittal plane containing the tumour mass were selected for analysis. For each sequence, patient MRI data were randomly allocated to 5 groups that further underwent fivefold cross-validation to evaluate the diagnostic efficacy of the CNN models. An additional 34 pairs of cases were used as an external test dataset to validate the CNN classifiers.
Results
After comparing multiple backbone CNN models, we developed a diagnostic system using Inception-v3. In the external test dataset, the per-examination combined sensitivities were 0.78 (0.71–0.84, 95% CI) based on T1-weighted images, 0.79 (0.72–0.84, 95% CI) for T2-weighted images, 0.88 (0.83–0.92, 95% CI) for CE-T1 images, and 0.88 (0.83–0.92, 95% CI) for all weighted images. The combined specificities were 0.72 based on T1-WI (0.66–0.78, 95% CI), 0.84 (0.78–0.89, 95% CI) based on T2-WI, 0.74 (0.67–0.80, 95% CI) for CE-T1, and 0.81 (0.76–0.86, 95% CI) for all weighted images. After all three MRI modalities were merged, the receiver operating characteristic (ROC) curve was calculated, and the area under the curve (AUC) was 0.93, with an accuracy of 0.87.
Conclusions
CNN based MRI analysis has the potential to accurately differentiate ependymomas from schwannomas in the lumbar segment.
Funder
National Natural Science Foundation of China grant
2021 Zhejiang Normal University Interdisciplinary Advance Research Fund
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献