CRISPR-Cas9 identifies growth-related subtypes of glioblastoma with therapeutical significance through cell line knockdown

Author:

Zhao Nannan,Weng Siyuan,Liu Zaoqu,Xu Hui,Ren Yuqin,Guo Chunguang,Liu Long,Zhang Zhenyu,Ji Yuchen,Han Xinwei

Abstract

Abstract Background Glioblastoma (GBM) is a type of highly malignant brain tumor that is known for its significant intratumoral heterogeneity, meaning that there can be a high degree of variability within the tumor tissue. Despite the identification of several subtypes of GBM in recent years, there remains to explore a classification based on genes related to proliferation and growth. Methods The growth-related genes of GBM were identified by CRISPR-Cas9 and univariate Cox regression analysis. The expression of these genes in the Cancer Genome Atlas cohort (TCGA) was used to construct growth-related genes subtypes (GGSs) via consensus clustering. Validation of this subtyping was performed using the nearest template prediction (NTP) algorithm in two independent Gene Expression Omnibus (GEO) cohorts and the ZZ cohort. Additionally, copy number variations, biological functions, and potential drugs were analyzed for each of the different subtypes separately. Results Our research established multicenter-validated GGSs. GGS1 exhibits the poorest prognosis, with the highest frequency of chr 7 gain & chr 10 loss, and the lowest frequency of chr 19 & 20 co-gain. Additionally, GGS1 displays the highest expression of EGFR. Furthermore, it is significantly enriched in metabolic, stemness, proliferation, and signaling pathways. Besides we showed that Foretinib may be a potential therapeutic agent for GGS1, the worst prognostic subtype, through data screening and in vitro experiments. GGS2 has a moderate prognosis, with a slightly higher proportion of chr 7 gain & chr 10 loss, and the highest proportion of chr 19 & 20 co-gain. The prognosis of GGS3 is the best, with the least chr 7 gain & 10 loss and EGFR expression. Conclusions These results enhance our understanding of the heterogeneity of GBM and offer insights for stratified management and precise treatment of GBM patients.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3