AC010883.5 promotes cell proliferation, invasion, migration, and epithelial-to-mesenchymal transition in cervical cancer by modulating the MAPK signaling pathway

Author:

Gan Qiyu,Huang Xia,Zhao Wenrong,Liu Hui,Xu Yan,Zhang Xiaohua,Cheng Jingxin,Chen Rui

Abstract

AbstractHomo sapiens chromosome 2 clone RP11-339H12 (AC010883.5) is a dysregulated long non-coding RNA (lncRNA) that has never been investigated in cervical cancer (CC). Thus, the potential function and molecular mechanism remain unclear. Our study explored the biological function of AC010883.5 to determine the underlying mechanisms in CC and provide potential therapeutic targets for improving the clinical treatment strategy. We used quantitative real-time polymerase chain reaction to measure mitochondrial RNA levels and western blot to measure the protein levels of target genes. Further, we used Cell Counting Kit-8 and 5‐Bromo-2'-deoxyuridine incorporation assays to evaluate cell proliferation in vitro. Cell apoptosis was analyzed by flow cytometry. Cell invasion was analyzed by wound healing and Transwell migration assays was ued to analyze cell migration. Finally, the biological function and mechanism of AC010883.5 in CC growth were evaluated by in vivo xenograft assay. AC010883.5 was enhanced in CC tissues and cell lines, and enhanced AC010883.5 expression accelerated CC cell proliferation, migration, and invasion and induced epithelial–mesenchymal transition in vitro and in vivo. AC010883.5 also activated the mitogen-activated protein kinase (MAPK) signaling pathway by promoting phosphorylation of extracellular signal-regulated kinase 1/2 (i.e., ERK1/2) and MAPK kinase 1/2 (i.e., MEK1/2). Blocking the MAPK signaling pathway could counteract the pro-proliferative, pro-migrative, and pro-invasive effects of AC010883.5 over-expression. We found that the lncRNA, AC010883.5, is an oncogenic molecule involved in CC tumor progression via dysregulation of the MAPK signaling pathway, implying that AC010883.5 could be a tumor progression and therapeutic response biomarker.

Funder

Natural Science Foundation of Jiangxi Province

Science Foundation of Shanghai Municipal Health Commission

National Natural Science Foundation of China

The Top-level Clinical Discipline Project of Shanghai Pudong

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3