Construction and validation of an immune infiltration-related risk model for predicting prognosis and immunotherapy response in low grade glioma

Author:

Li Jinna,Guo Qing,Xing Rui

Abstract

Abstract Background Low grade glioma (LGG) is considered a heterogeneous tumor with highly variable survival and limited efficacy of immunotherapy. To identify high-risk subsets and apply immunotherapy effectively in LGG, the status and function of immune infiltration in the glioma microenvironment must be explored. Methods Four independent glioma cohorts comprising 1,853 patients were enrolled for bioinformatics analysis. We used ConsensusClusterPlus to cluster patients into four different immune subtypes based on immune infiltration. The immune-infiltration signature (IIS) was constructed by LASSO regression analysis. Somatic mutation and copy number variation (CNV) analyses were performed to explore genomic and transcriptomic traits in the high- and low- risk groups. The correlation between response to programmed cell death 1 (PD-1) blockade and the IIS risk score was confirmed in an in vivo glioma model. Results Patients were clustered into four different immune subtypes based on immune infiltration, and the high immune infiltration subtype was associated with worse survival in LGG. The high immune infiltration subtype had stronger inflammatory response, immune response and immune cell chemotaxis. The IIS, consisting of EMP3, IQGAP2, METTL7B, SLC1A6 and TNFRSF11B, could predict LGG malignant progression, which was validated with internal clinical samples. M2 macrophage infiltration positively correlated with the IIS risk score. The high-risk group had significantly more somatic mutations and CNVs. The IIS risk score was related to immunomodulatory molecules and could predict immunotherapy clinical benefit. In vivo, immunotherapy-sensitive glioma model exhibited higher IIS risk score and more infiltration of immune cells, especially M2 macrophages. The IIS risk score was decreased in an immunotherapy-sensitive glioma model after anti-PD1 immunotherapy. Conclusion Different immune subtypes of LGG had unique immune cell infiltration characteristics, and the high immune infiltration subtype was associated with immunosuppressive signaling pathways. A novel IIS prognostic model based on immune infiltration status was constructed for immunophenotypic classification, risk stratification, prognostication and immunotherapy response prediction in LGG.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3