Evaluation of the expression levels of BRAFV600E mRNA in primary tumors of thyroid cancer using an ultrasensitive mutation assay

Author:

Tran Tien Viet,Dang Kien Xuan,Pham Quynh Huong,Nguyen Ung Dinh,Trinh Nhung Thi Trang,Hoang Luong Van,Ho Son Anh,Nguyen Ba Van,Nguyen Duc Trong,Trinh Dung Tuan,Tran Dung Ngoc,Orpana Arto,Stenman Ulf-Håkan,Stenman Jakob,Ho Tho Huu

Abstract

Abstract Background The BRAFV600E gene encodes for the mutant BRAFV600E protein, which triggers downstream oncogenic signaling in thyroid cancer. Since most currently available methods have focused on detecting BRAFV600E mutations in tumor DNA, there is limited information about the level of BRAFV600E mRNA in primary tumors of thyroid cancer, and the diagnostic relevance of these RNA mutations is not known. Methods Sixty-two patients with thyroid cancer and non-malignant thyroid disease were included in the study. Armed with an ultrasensitive technique for mRNA-based mutation analysis based on a two step RT-qPCR method, we analysed the expression levels of the mutated BRAFV600E mRNA in formalin-fixed paraffin-embedded samples of thyroid tissues. Sanger sequencing for detection of BRAFV600E DNA was performed in parallel for comparison and normalization of BRAFV600E mRNA expression levels. Results The mRNA-based mutation detection assay enables detection of the BRAFV600E mRNA transcripts in a 10,000-fold excess of wildtype BRAF counterparts. While BRAFV600E mutations could be detected by Sanger sequencing in 13 out of 32 malignant thyroid cancer FFPE tissue samples, the mRNA-based assay detected mutations in additionally 5 cases, improving the detection rate from 40.6 to 56.3%. Furthermore, we observed a surprisingly large, 3-log variability, in the expression level of the BRAFV600E mRNA in FFPE samples of thyroid cancer tissue. Conclusions The expression levels of BRAFV600E mRNA was characterized in the primary tumors of thyroid cancer using an ultrasensitive mRNA-based mutation assay. Our data inspires further studies on the prognostic and diagnostic relevance of the BRAFV600E mRNA levels as a molecular biomarker for the diagnosis and monitoring of various genetic and malignant diseases.

Funder

National Foundation for Science and Technology Development

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference39 articles.

1. GLOBOCAN. 2018. https://gco.iarc.fr/.

2. Trovisco V, Soares P, Sobrinho-Simoes M. B-RAF mutations in the etiopathogenesis, diagnosis, and prognosis of thyroid carcinomas. Hum Pathol. 2006;37(7):781–6.

3. Tan YH, Liu Y, Eu KW, Ang PW, Li WQ, Salto-Tellez M, et al. Detection of BRAF V600E mutation by pyrosequencing. Pathology. 2008;40(3):295–8.

4. Sithanandam G, Kolch W, Duh FM, Rapp UR. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene. 1990;5(12):1775–80.

5. Sithanandam G, Druck T, Cannizzaro LA, Leuzzi G, Huebner K, Rapp UR. B-raf and a B-raf pseudogene are located on 7q in man. Oncogene. 1992;7(4):795–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3