Abstract
Abstract
Background
To investigate the beam complexity and monitor unit (MU) efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC).
Methods
Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in the Pinnacle3 treatment planning system with the Auto-Planning module for the Trilogy and Synergy systems. Similar planning dose objectives and beam configurations were used for each site in the two different delivery systems to produce clinically acceptable plans. The beam complexity was evaluated in terms of the segment area (SA), segment width (SW), leaf sequence variability (LSV), aperture area variability (AAV), and modulation complexity score (MCS) based on the multileaf collimator sequence and MU. Plan delivery and a gamma evaluation were performed using a helical diode array.
Results
With similar plan quality, the average SAs for the Trilogy plans were smaller than those for the Synergy plans: 55.5 ± 21.3 cm2 vs. 66.3 ± 17.9 cm2 (p < 0.05) for the NPC cases and 100.7 ± 49.2 cm2 vs. 108.5 ± 42.7 cm2 (p < 0.05) for the BC cases, respectively. The SW was statistically significant for the two delivery systems (NPC: 6.87 ± 1.95 cm vs. 6.72 ± 2.71 cm, p < 0.05; BC: 8.84 ± 2.56 cm vs. 8.09 ± 2.63 cm, p < 0.05). The LSV was significantly smaller for Trilogy (NPC: 0.84 ± 0.033 vs. 0.86 ± 0.033, p < 0.05; BC: 0.89 ± 0.026 vs. 0.90 ± 0.26, p < 0.05). The mean AAV was significantly larger for Trilogy than for Synergy (NPC: 0.18 ± 0.064 vs. 0.14 ± 0.037, p < 0.05; BC: 0.46 ± 0.15 vs. 0.33 ± 0.13, p < 0.05). The MCS values for Trilogy were higher than those for Synergy: 0.14 ± 0.016 vs. 0.12 ± 0.017 (p < 0.05) for the NPC cases and 0.42 ± 0.106 vs. 0.30 ± 0.087 (p < 0.05) for the BC cases. Compared with the Synergy plans, the average MUs for the Trilogy plans were larger: 828.6 ± 74.1 MU and 782.9 ± 85.2 MU (p > 0.05) for the NPC cases and 444.8 ± 61.3 MU and 393.8 ± 75.3 MU (p > 0.05) for the BC cases. The gamma index agreement scores were never below 91% using 3 mm/3% (global) distance to agreement and dose difference criteria and a 10% lower dose exclusion threshold.
Conclusions
The Pinnacle3 Auto-Planning system can optimize BC and NPC plans to achieve the same plan quality using both the Trilogy and Synergy systems. We found that these two systems resulted in different SAs, SWs, LSVs, AAVs and MCSs. As a result, we suggested that the beam complexity should be considered in the development of further methodologies while optimizing VMAT autoplanning.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Academic promotion program of Shandong First Medical University and the Foundation of Taishan Scholars
Science and Technology Plan of Jinan city
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference30 articles.
1. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35:310–7.
2. Bedford JL. Treatment planning for volumetric modulated arc therapy. Med Phys. 2009;36:5128–38.
3. Wu Y, Dogan N, Liang X. Assessment of volumetric arc therapy plans for constant and variable dose rates. Med Phys. 2010;37:3350–1.
4. Kim JI, Park JM, Park SY, Choi CH, Wu HG, Ye SJ. Assessment of potential jaw-tracking advantage using control point sequences of VMAT planning. J Appl Clin Med Phys. 2014;15:4625–8.
5. Serna A, Puchades V, Mata F, Ramos D, Alcaraz M. Influence of multi-leaf collimator leaf width in radiosurgery via volumetric modulated arc therapy and 3D dynamic conformal arc therapy. Phys Med. 2015;33:293–6.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献