Lentivirus-mediated CDglyTK gene-modified free flaps by intra-artery perfusion show targeted therapeutic efficacy in rat model of breast cancer

Author:

Zhang Jianhua,Liu Yuanbo,Zang Mengqing,Zhu Shan,Chen Bo,Li Shanshan,Xue Bingjian,Yan Li

Abstract

Abstract Background Free flap-mediated gene therapy in the tumor bed following surgical resection is a promising approach in cancer targeted treatment of residual disease. We investigated the selective killing efficacy of a lentivirus-mediated cytosine deaminase-thymidine kinase (CDglyTK) gene in transplanted breast cancer delivered into a free flap by intra-artery perfusion. Methods Proliferation, apoptosis, and cell cycle of rat SHZ-88 breast cancer cells transfected with a lentivirus-mediated CD/TK gene were measured following treatment with ganciclovir and 5-flucytosine in vitro. A model of residual disease of breast cancer in a rat superficial inferior epigastric artery (SIEA) flap model was used to study the therapeutic potential of a double suicide CD/TK and prodrug system in vivo. Results Killing efficacy of the double suicide CD/TK and prodrug system on SHZ-88 cells was mediated by increased apoptosis and cell cycle arrest at the G1 phase with significant bystander effect. Following recombinant lentivirus transfection of rat SIEA flap by intra-artery perfusion, CD/TK gene expression was limited to the flap, and the volume and weight of transplanted tumors were significantly reduced without observable toxicity. Conclusions SIEA flaps transfected with a lentivirus-mediated CDglyTK gene by intra-artery perfusion effectively suppress transplanted breast tumor growth without obvious systemic toxic effects in rats.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3