Augmenting cancer registry data with health survey data with no cases in common: the relationship between pre-diagnosis health behaviour and post-diagnosis survival in oesophageal cancer

Author:

Fahey Paul P.ORCID,Page Andrew,Stone Glenn,Astell-Burt Thomas

Abstract

Abstract Background For epidemiological research, cancer registry datasets often need to be augmented with additional data. Data linkage is not feasible when there are no cases in common between data sets. We present a novel approach to augmenting cancer registry data by imputing pre-diagnosis health behaviour and estimating its relationship with post-diagnosis survival time. Methods Six measures of pre-diagnosis health behaviours (focussing on tobacco smoking, ‘at risk’ alcohol consumption, overweight and exercise) were imputed for 28,000 cancer registry data records of US oesophageal cancers using cold deck imputation from an unrelated health behaviour dataset. Each data point was imputed twice. This calibration allowed us to estimate the misclassification rate. We applied statistical correction for the misclassification to estimate the relative risk of dying within 1 year of diagnosis for each of the imputed behaviour variables. Subgroup analyses were conducted for adenocarcinoma and squamous cell carcinoma separately. Results Simulated survival data confirmed that accurate estimates of true relative risks could be retrieved for health behaviours with greater than 5% prevalence, although confidence intervals were wide. Applied to real datasets, the estimated relative risks were largely consistent with current knowledge. For example, tobacco smoking status 5 years prior to diagnosis was associated with an increased age-adjusted risk of all cause death within 1 year of diagnosis for oesophageal squamous cell carcinoma (RR = 1.99 95% CI 1.24,3.12) but not oesophageal adenocarcinoma RR = 1.61, 95% CI 0.79,2.57). Conclusions We have demonstrated a novel imputation-based algorithm for augmenting cancer registry data for epidemiological research which can be used when there are no cases in common between data sets. The algorithm allows investigation of research questions which could not be addressed through direct data linkage.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3