Hsa-miR-1248 suppressed the proliferation, invasion and migration of colorectal cancer cells via inhibiting PSMD10

Author:

Wang Chengxing,Wang Bin,Liang Weijun,Zhou Chaorong,Lin Weixing,Meng Zijie,Wu Wanting,Wu Meimei,Liao Yuehua,Li Xiaoping,Zhao Jinglin,He Yaoming

Abstract

Abstract Background Lymph node metastasis (LNM) is a critical event during the colorectal cancer (CRC) development and is indicative of poor prognosis. Identification of molecular markers of LNM may facilitate better therapeutic decision-making. Methods Six pairs of CRC tissues and corresponding adjacent tissues [3 pairs diagnosed as pT1N0M0 (M_Low group) and 3 pairs diagnosed as pT4N2M0 (M_High group)] collected from CRC patients who underwent surgical resection were used. MicroRNA sequencing was performed to screen differential microRNAs involved in CRC LNM. The selected microRNAs were validated in CRC tissues and cell lines using qRT-PCR. The functions of candidate hsa-miR-1248 were evaluated by CCK-8, colony formation, and Transwell assay. The binding of hsa-miR-1248 with its target PSMD10 was confirmed by luciferase activity assay, and the expression of PSMD10 in tissues was detected by droplet digital polymerase chain reaction. Results Ninety-five miRNAs were downregulated in carcinoma tissues (M_Low and M_high groups) compared with the normal group. Their expression in M_High group was significantly lower compared with M_Low group. The top 3 were hsa-miR-635, hsa-miR-1248, and hsa-miR-668-3p. After validation in tissues/cell lines, only hsa- hsa-miR-1248 was decreased in high metastatic tissues or SW620 cells compared to low metastatic tissues or SW480 cells. Hsa-miR-1248 was found to inhibit CRC cell viability, proliferation, invasion, and migration. The tumor suppressor effect of has-miR-1248 in CRC cells was attenuated or enhanced by up-regulating or down-regulating PSMD10, respectively. Conclusion Hsa-miR-1248 may act as a tumor suppressor gene in CRC by targeting and inhibiting PSMD10, which provides a clue for CRC treatment.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3