Comprehensive prognostic and immune analysis of a glycosylation related risk model in pancreatic cancer

Author:

Liu XueAng,Shi Jian,Tian Lei,Xiao Bin,Zhang Kai,Zhu Yan,Zhang YuFeng,Jiang KuiRong,Zhu Yi,Yuan Hao

Abstract

Abstract Background Pancreatic cancer (PC) is a malignant tumor with extremely poor prognosis, exhibiting resistance to chemotherapy and immunotherapy. Nowadays, it is ranked as the third leading cause of cancer-related mortality. Glycation is a common epigenetic modification that occurs during the tumor transformation. Many studies have demonstrated a strong correlation between glycation modification and tumor progression. However, the expression status of glycosylation-related genes (GRGs) in PC and their potential roles in PC microenvironment have not been extensively investigated. Method We systematically integrated RNA sequencing data and clinicopathological parameters of PC patients from TCGA and GTEx databases. A GRGs risk model based on glycosylation related genes was constructed and validated in 60 patients from Pancreatic biobank via RT-PCR. R packages were used to analyze the relationships between GRGs risk scores and overall survival (OS), tumor microenvironment, immune checkpoint, chemotherapy drug sensitivity and tumor mutational load in PC patients. Panoramic analysis was performed on PC tissues. The function of B3GNT8 in PC was detected via in vitro experiments. Results In this study, we found close correlations between GRGs risk model and PC patients’ overall survival and tumor microenvironment. Multifaceted predictions demonstrated the low-risk cohort exhibits superior OS compared to high-risk counterparts. Meanwhile, the low-risk group was characterized by high immune infiltration and may be more sensitive to immunotherapy or chemotherapy. Panoramic analysis was further confirmed a significant relationship between the GRGs risk score and both the distribution of PC tumor cells as well as CD8 + T cell infiltration. In addition, we also identified a unique glycosylation gene B3GNT8, which could suppress PC progression in vitro and in vivo. Conclusion We established a GRGs risk model, which could predict prognosis and immune infiltration in PC patients. This risk model may provide a new tool for PC precision treatment.

Funder

National Natural Science Foundation of China

Jiangsu Province Capability Improvement Project through Science, Technology and Education

Young Scholars Fostering Fund of the First Affiliated Hospital of Nanjing Medical University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3