An immunochemistry-based screen for chemical inhibitors of DNA-protein interactions and its application to human CGGBP1

Author:

Patel Manthan,Patel Divyesh,Datta Subhamoy,Singh UmashankarORCID

Abstract

Abstract Background Inhibition of DNA-binding of proteins by small-molecule chemicals holds immense potential in manipulating the activities of DNA-binding proteins. Such a chemical inhibition of DNA-binding of proteins can be used to modulate processes such as replication, transcription, DNA repair and maintenance of epigenetic states. This prospect is currently challenged with the absence of robust and generic protocols to identify DNA-protein interactions. Additionally, much of the current approaches to designing inhibitors requires structural information of the target proteins. Methods We have developed a simple dot blot and immunodetection-based assay to screen chemical libraries for inhibitors of DNA-protein interactions. The assay has been applied to a library of 1685 FDA-approved chemicals to discover inhibitors of CGGBP1, a multifunctional DNA-binding protein with no known structure. Additional in vitro and in cellulo assays have been performed to verify and supplement the findings of the screen. Results Our primary screen has identified multiple inhibitors of direct or indirect interactions between CGGBP1 and genomic DNA. Of these, one inhibitor, Givinostat, was found to inhibit direct DNA-binding of CGGBP1 in the secondary screen using purified recombinant protein as the target. DNA and chromatin immunoprecipitation assays reinforced the findings of the screen that Givinostat inhibits CGGBP1-DNA binding. Conclusions The assay we have described successfully identifies verifiable inhibitors of DNA-binding of protein; in this example, the human CGGBP1. This assay is customizable for a wide range of targets for which primary antibodies are available. It works with different sources of the target protein, cell lysates or purified recombinant preparations and does not require special equipment, DNA modifications or protein structural data. This assay is scalable and highly adaptable with the potential to discover inhibitors of transcription factors with implications in cancer biology.

Funder

GSBTM

Science and Engineering Research Board

Department of Biotechnology , Ministry of Science and Technology

Biomedical Engineering Centre, IIT Gandhinagar

UGC-NET Junior Research Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3