Identification and validation of genes associated with prognosis of cisplatin-resistant ovarian cancer

Author:

Liu Dajiang,Li Ruiyun,Wang Yidan,Li Dan,Li Leilei

Abstract

Abstract Purpose To investigate the role of prognostic genes related to cisplatin resistance in ovarian cancer during disease progression. Method The gene expression profile of the NCI-60 cell line was acquired through comprehensive analysis of the GEO database accession GSE116439. We performed a thorough analysis of gene expression differences in samples from seven individuals exposed to cisplatin concentrations of 0 nM compared to seven samples exposed to 15000 nM over a 24-h period. Key genes were initially identified through LASSO regression, followed by their enrichment through differential gene function analysis (GO) and pathway enrichment analysis (KEGG). Subsequently, a prognostic risk model was established for these key genes. The prognostic model's performance was assessed through K-M survival curves and ROC curves. To examine the variance in immune cell infiltration between the high and low-risk groups, CIBERSORTx analysis was employed. Finally, validation of prognostic gene expression in cisplatin-resistant ovarian cancer was carried out using clinical samples, employing RT-qPCR and Western Blot techniques. Results A total of 132 differential genes were found between cisplatin resistance and control group, and 8 key prognostic genes were selected by analysis, namely VPS13B, PLGRKT, CDKAL1, TBC1D22A, TAP1, PPP3CA, CUX1 and PPP1R15A. The efficacy of the risk assessment model derived from prognostic biomarkers, as indicated by favorable performance on both Kaplan–Meier survival curves and ROC curves. Significant variations in the abundance of Macrophages M1, T cells CD4 memory resting, T cells follicular helper, and T cells gamma delta were observed between the high and low-risk groups. To further validate our findings, RT-qPCR and Western Blot analyses were employed, confirming differential expression of the identified eight key genes between the two groups. Conclusion VPS13B, TBC1D22A, PPP3CA, CUX1 and PPP1R15A were identified as poor prognostic genes of cisplatin resistance in ovarian cancer, while PLGRKT, CDKAL1 and TAP1 were identified as good prognostic genes. This offers a novel perspective for future advancements in ovarian cancer treatment, suggesting potential avenues for the development of new therapeutic targets.

Funder

Science and Technology Project of Gansu Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3