Construction and validation of a nomogram to predict the overall survival of small cell lung cancer: a multicenter retrospective study in Shandong province, China

Author:

Song Ziqian,Ma Hengmin,Sun Hao,Li Qiuxia,Liu Yan,Xie Jing,Feng Yukun,Shang Yuwang,Ma Kena,Zhang Nan,Wang Jialin

Abstract

Abstract Background Patients diagnosed with small cell lung cancer (SCLC) typically experience a poor prognosis, and it is essential to predict overall survival (OS) and stratify patients based on distinct prognostic risks. Methods Totally 2309 SCLC patients from the hospitals in 15 cities of Shandong from 2010 − 2014 were included in this multicenter, population-based retrospective study. The data of SCLC patients during 2010–2013 and in 2014 SCLC were used for model development and validation, respectively. OS served as the primary outcome. Univariate and multivariate Cox regression were applied to identify the independent prognostic factors of SCLC, and a prognostic model was developed based on these factors. The discrimination and calibration of this model were assessed by the time-dependent C-index, time-dependent receiver operator characteristic curves (ROC), and calibration curves. Additionally, Decision Curve Analysis (DCA) curves, Net Reclassification Improvement (NRI), and Integrated Discriminant Improvement (IDI) were used to assess the enhanced clinical utility and predictive accuracy of the model compared to TNM staging systems. Results Multivariate analysis showed that region (Southern/Eastern, hazard ratio [HR] = 1.305 [1.046 − 1.629]; Western/Eastern, HR = 0.727 [0.617 − 0.856]; Northern/Eastern, HR = 0.927 [0.800 − 1.074]), sex (female/male, HR = 0.838 [0.737 − 0.952]), age (46–60/≤45, HR = 1.401 [1.104 − 1.778]; 61–75/≤45, HR = 1.500 [1.182 − 1.902]; >75/≤45, HR = 1.869 [1.382 − 2.523]), TNM stage (II/I, HR = 1.119[0.800 − 1.565]; III/I, HR = 1.478 [1.100 − 1.985]; IV/I, HR = 1.986 [1.477 − 2.670], surgery (yes/no, HR = 0.677 [0.521 − 0.881]), chemotherapy (yes/no, HR = 0.708 [0.616 − 0.813]), and radiotherapy (yes/no, HR = 0.802 [0.702 − 0.917]) were independent prognostic factors of SCLC patients and were included in the nomogram. The time-dependent AUCs of this model in the training set were 0.699, 0.683, and 0.683 for predicting 1-, 3-, and 5-year OS, and 0.698, 0.698, and 0.639 in the validation set, respectively. The predicted calibration curves aligned with the ideal curves, and the DCA curves, the IDI, and the NRI collectively demonstrated that the prognostic model had a superior net benefit than the TNM staging system. Conclusion The nomogram using SCLC patients in Shandong surpassed the TNM staging system in survival prediction accuracy and enabled the stratification of patients with distinct prognostic risks based on nomogram scores.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3