MRI-based automatic identification and segmentation of extrahepatic cholangiocarcinoma using deep learning network

Author:

Yang Chunmei,Zhou Qin,Li Mingdong,Xu Lulu,Zeng Yanyan,Liu Jiong,Wei Ying,Shi Feng,Chen Jing,Li Pinxiong,Shu Yue,Yang Lu,Shu JianORCID

Abstract

Abstract Background Accurate identification of extrahepatic cholangiocarcinoma (ECC) from an image is challenging because of the small size and complex background structure. Therefore, considering the limitation of manual delineation, it’s necessary to develop automated identification and segmentation methods for ECC. The aim of this study was to develop a deep learning approach for automatic identification and segmentation of ECC using MRI. Methods We recruited 137 ECC patients from our hospital as the main dataset (C1) and an additional 40 patients from other hospitals as the external validation set (C2). All patients underwent axial T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI). Manual delineations were performed and served as the ground truth. Next, we used 3D VB-Net to establish single-mode automatic identification and segmentation models based on T1WI (model 1), T2WI (model 2), and DWI (model 3) in the training cohort (80% of C1), and compared them with the combined model (model 4). Subsequently, the generalization capability of the best models was evaluated using the testing set (20% of C1) and the external validation set (C2). Finally, the performance of the developed models was further evaluated. Results Model 3 showed the best identification performance in the training, testing, and external validation cohorts with success rates of 0.980, 0.786, and 0.725, respectively. Furthermore, model 3 yielded an average Dice similarity coefficient (DSC) of 0.922, 0.495, and 0.466 to segment ECC automatically in the training, testing, and external validation cohorts, respectively. Conclusion The DWI-based model performed better in automatically identifying and segmenting ECC compared to T1WI and T2WI, which may guide clinical decisions and help determine prognosis.

Funder

Sichuan Province Science and Technology Program

National Science Foundation for Young Scientists of China

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3