An exploratory study of cell stiffness as a mechanical label-free biomarker across multiple musculoskeletal sarcoma cells

Author:

Daniel Cyril,Traub Frank,Sachsenmaier Saskia,Riester Rosa,Mederake Moritz,Konrads Christian,Danalache Marina

Abstract

Abstract Background Cancer cells are characterized by changes in cell cytoskeletal architecture and stiffness. Despite advances in understanding the molecular mechanisms of musculoskeletal cancers, the corresponding cellular mechanical properties remain largely unexplored. The aim of this study was to investigate the changes in cellular stiffness and the associated cytoskeleton configuration alterations in various musculoskeletal cancer cells. Methods Cell lines from five main sarcoma types of the musculoskeletal system (chondrosarcoma, osteosarcoma, Ewing sarcoma, fibrosarcoma and rhabdomyosarcoma) as well as their healthy cell counterparts (chondrocytes, osteoblasts, mesenchymal stem cells, fibroblasts, skeletal muscle cells) were subjected to cell stiffness measurements via atomic force microscopy (AFM). Biochemical and structural changes of the cytoskeleton (F-actin, β-tubulin and actin-related protein 2/3) were assessed by means of fluorescence labelling, ELISA and qPCR. Results While AFM stiffness measurements showed that the majority of cancer cells (osteosarcoma, Ewing sarcoma, fibrosarcoma and rhabdomyosarcoma) were significantly less stiff than their corresponding non-malignant counterparts (p < 0.001), the chondrosarcoma cells were significant stiffer than the chondrocytes (p < 0.001). Microscopically, the distribution of F-actin differed between malignant entities and healthy counterparts: the organisation in well aligned stress fibers was disrupted in cancer cell lines and the proteins was mainly concentrated at the periphery of the cell, whereas β-tubulin had a predominantly perinuclear localization. While the F-actin content was lower in cancer cells, particularly Ewing sarcoma (p = 0.018) and Fibrosarcoma (p = 0.023), this effect was even more pronounced in the case of β-tubulin for all cancer-healthy cell duos. Interestingly, chondrosarcoma cells were characterized by a significant upregulation of β-tubulin gene expression (p = 0.005) and protein amount (p = 0.032). Conclusion Modifications in cellular stiffness, along with structural and compositional cytoskeleton rearrangement, constitute typical features of sarcomas cells, when compared to their healthy counterpart. Notably, whereas a decrease in stiffness is typically a feature of malignant entities, chondrosarcoma cells were stiffer than chondrocytes, with chondrosarcoma cells exhibiting a significantly upregulated β-tubulin expression. Each Sarcoma entity may have his own cellular-stiffness and cytoskeleton organisation/composition fingerprint, which in turn may be exploited for diagnostic or therapeutic purposes.

Funder

Universitätsklinikum Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference59 articles.

1. Stylianou A, Stylianopoulos T. Atomic Force Microscopy probing of Cancer cells and Tumor Microenvironment Components. BioNanoScience. 2016;6(1):33–46.

2. Casali PG, Abecassis N, Aro HT, Bauer S, Biagini R, Bielack S, Bonvalot S, Boukovinas I, Bovee J, Brodowicz T, Broto JM, Buonadonna A, De Álava E, Dei Tos AP, Del Muro XG, Dileo P, Eriksson M, Fedenko A, Ferraresi V, Ferrari A, Ferrari S, Frezza AM, Gasperoni S, Gelderblom H, Gil T, Grignani G, Gronchi A, Haas RL, Hassan B, Hohenberger P, Issels R, Joensuu H, Jones RL, Judson I, Jutte P, Kaal S, Kasper B, Kopeckova K, Krákorová DA, Le Cesne A, Lugowska I, Merimsky O, Montemurro M, Pantaleo MA, Piana R, Picci P, Piperno-Neumann S, Pousa AL, Reichardt P, Robinson MH, Rutkowski P, Safwat AA, Schöffski P, Sleijfer S, Stacchiotti S, Sundby Hall K, Unk M, Van Coevorden F, van der Graaf J, Wardelmann E, Zaikova O, Blay JY. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018, 29, (Suppl 4), iv51-iv67.

3. Italiano A, Di Mauro I, Rapp J, Pierron G, Auger N, Alberti L, Chibon F, Escande F, Voegeli AC, Ghnassia JP, Keslair F, Laé M, Ranchère-Vince D, Terrier P, Baffert S, Coindre JM, Pedeutour F. Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study. Lancet Oncol. 2016;17(4):532–8.

4. Voltan K, Baptista AM, Etchebehere M. Extremities soft tissue sarcomas, more common and as dangerous as bone sarcomas. Rev Bras Ortop (Sao Paulo). 2021;56(4):419–24.

5. Genadry KC, Pietrobono S, Rota R, Linardic CM. Soft tissue Sarcoma Cancer Stem cells: an overview. Front Oncol. 2018;8:475–5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3