Author:
Wu Gujie,Liu Jun,Shi Haochun,Pan Binyang,Li Min,Wang Xiaolin,Li Yao,Cheng Lin,Guo Weigang,Huang Yiwei
Abstract
Abstract
Background
Metabolic dysregulation is recognized as a significant hallmark of cancer progression. Although numerous studies have linked specific metabolic pathways to cancer incidence, the causal relationship between blood metabolites and lung cancer risk remains unclear.
Methods
Genomic data from 29,266 lung cancer patients and 56,450 control individuals from the Transdisciplinary Research in Cancer of the Lung and the International Lung Cancer Consortium (TRICL-ILCCO) were utilized, and findings were replicated using additional data from the FinnGen consortium. The analysis focused on the associations between 486 blood metabolites and the susceptibility to overall lung cancer and its three major clinical subtypes. Various Mendelian randomization methods, including inverse-variance weighting, weighted median estimation, and MR-Egger regression, were employed to ensure the robustness of our findings.
Results
A total of 19 blood metabolites were identified with significant associations with lung cancer risk. Specifically, oleate (OR per SD = 2.56, 95% CI: 1.51 to 4.36), 1-arachidonoylglyceropholine (OR = 1.79, 95% CI: 1.22 to 2.65), and arachidonate (OR = 1.67, 95% CI: 1.16 to 2.40) were associated with a higher risk of lung cancer. Conversely, 1-linoleoylglycerophosphoethanolamine (OR = 0.57, 95% CI: 0.40 to 0.82), ADpSGEGDFXAEGGGVR, a fibrinogen cleavage peptide (OR = 0.60, 95% CI: 0.47 to 0.77), and isovalerylcarnitine (OR = 0.62, 95% CI: 0.49 to 0.78) were associated with a lower risk of lung cancer. Notably, isoleucine (OR = 9.64, 95% CI: 2.55 to 36.38) was associated with a significantly higher risk of lung squamous cell cancer, while acetyl phosphate (OR = 0.11, 95% CI: 0.01 to 0.89) was associated with a significantly lower risk of small cell lung cancer.
Conclusion
This study reveals the complex relationships between specific blood metabolites and lung cancer risk, highlighting their potential as biomarkers for lung cancer prevention, screening, and treatment. The findings not only deepen our understanding of the metabolic mechanisms of lung cancer but also provide new insights for future treatment strategies.
Publisher
Springer Science and Business Media LLC