Circ-SMARCA5 suppresses progression of multiple myeloma by targeting miR-767-5p

Author:

Liu Haiyan,Wu Yan,Wang Shunye,Jiang Jie,Zhang Chenlu,Jiang Yijing,Wang Xingfeng,Hong Lewen,Huang HongmingORCID

Abstract

Abstract Background We aimed to investigate the correlation of Circ-SMARCA5 with disease severity and prognosis in multiple myeloma (MM), and its underlying mechanisms in regulating cell proliferation and apoptosis. Methods Bone marrow samples from 105 MM patients and 36 healthy controls were collected for Circ-SMARCA5 expression measurement. And the correlation of Circ-SMARCA5 expression with patients’ characteristics and survival was determined. In vitro, the effect of Circ-SMARCA5 on MM cell proliferation and apoptosis was evaluated by altering Circ-SMARCA5 expression through transfection. Rescue experiments and luciferase assay were further performed to explore the mechanism of Circ-SMARCA5 as well as its potential target miR-767-5p in regulating MM cell activity. Results Circ-AMARCA5 was downregulated in MM and presented a good value in distinguishing MM patients from controls and it was also negatively correlated with Beta-2-microglobulin (β2-MG) level and International Staging System (ISS) stage. Additionally, Circ-SMARCA5 high expression was associated with higher CR as well as better PFS and OS. As for in vitro experiments, Circ-SMARCA5 expression was lower in MM cell lines compared with normal cells, and Circ-SMARCA5 overexpression inhibited cell proliferation but promoted cell apoptosis in RPMI8226 cells. Rescue experiments disclosed that the effect of Circ-SMARCA5 on cell activity was attenuated by miR-767-5p, and luciferase reporter assay revealed direct binding between Circ-SMARCA5 and miR-767-5p. Conclusions Circ-SMARCA5 is downregulated and correlated with lower β2-MG level and ISS stage as well as better prognosis in MM patients, and it inhibits proliferation but promotes apoptosis of MM cells via directly sponging miR-767-5p.

Funder

National Natural Science Foundation of China

Science and Technology Project of Nantong City

Nantong Science and Technology Program

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3