Natural killer cell-related gene signature predicts malignancy of glioma and the survival of patients

Author:

Li Chenglong,Liu Fangkun,Sun Lunquan,Liu Zhixiong,Zeng Yu

Abstract

Abstract Background Natural killer (NK) cells-based therapies are one of the most promising strategies against cancer. The aim of this study is to investigate the natural killer cell related genes and its prognostic value in glioma. Methods The Chinese Glioma Genome Atlas (CGGA) was used to develop the natural killer cell-related signature. Risk score was built by multivariate Cox proportional hazards model. A cohort of 326 glioma samples with whole transcriptome expression data from the CGGA database was included for discovery. The Cancer Genome Atlas (TCGA) datasets was used for validation. GO and KEGG were used to reveal the biological process and function associated with the natural killer cell-related signature. We also collected the clinical pathological features of patients with gliomas to analyze the association with tumor malignancy and patients’ survival. Results We screened for NK-related genes to build a prognostic signature, and identified the risk score based on the signature. We found that NK-related risk score was independent of various clinical factors. Nature-killer cell gene expression is correlated with clinicopathological features of gliomas. Innovatively, we demonstrated the tight relation between the risk score and immune checkpoints, and found NK-related risk score combined with PD1/PDL1 patients could predict the patient outcome. Conclusion Natural killer cell-related gene signature can predict malignancy of glioma and the survival of patients, these results might provide new view for the research of glioma malignancy and individual immunotherapy.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3